Objective Tissue engineered bone (TEB) lacks of an effective and feasible method of storage and transportation. To evaluate the activity of osteogenesis and capabil ity of ectopic osteogenesis for TEB after freeze-dried treatment in vitro and in vivo and to explore a new method of preserving and transporting TEB. Methods Human bone marrow mesenchymal stem cells (hBMSCs) and decalcified bone matrix (DBM) were harvested from bone marrow and bone tissue of the healthy donators. TEB was fabricated with the 3rd passage hBMSCs and DBM, and they were frozen and dried at extremely low temperatures after 3, 5, 7, 9, 12, and 15 days of culture in vitro to obtain freeze-dried tissue engineered bone (FTEB). TEB and FTEB were observed by gross view and scanning electron microscope (SEM). Western blot was used to detect the changes of relative osteogenic cytokines, including bone morphogenetic protein 2 (BMP-2), transforming growth factor β1 (TGF-β1), and insul in-l ike growth factor 1 (IGF-1) between TEB and FTEB. The ectopic osteogenesis was evaluated by the methods of X-ray, CT score, and HE staining after TEB and FTEB were transplanted into hypodermatic space in athymic mouse. Results SEM showed that the cells had normal shape in TEB, and secretion of extracellular matrix increased with culture time; in FTEB, seeding cells were killed by the freeze-dried process, and considerable extracellular matrix were formed in the pore of DBM scaffold. The osteogenic cytokines (BMP-2, TGF-β1, and IGF-1) in TEB were not decreased after freeze-dried procedure, showing no significant difference between TEB and FTEB (P gt; 0.05) except TGF-β1 15 days after culture (P lt; 0.05). The ectopic osteogenesis was observed in TEB and FTEB groups 8 and 12 weeks after transplantation, there was no significant difference in the calcified level of grafts between TEB and FTEB groups by the analysis of X-ray and CT score. On the contrary, there was no ectopic osteogenesis in group DBM 12 weeks after operation. HE staining showed that DBM scaffold degraded and disappeared 12 weeks after operation. Conclusion The osteogenic activity of TEB and FTEB is similar, which provides a new strategy to preserve and transport TEB.
Objective To evaluate the adhesion, prol iferation and osteogenic differentiation of rabbit BMSCs after cultured on freeze-dried demineral ized bone matrix (FDBM) modified with type II cadherin ectodomain (Cad- II). Methods BMSCs isolated from 10 Japanese white rabbits (male and female, 4-week-old, 0.61-0.88 kg) were cultured. The second generation of BMSCs (cell density 1 × 106 /mL) were seeded onto the Cad-II modified allogenic FDBM (experimental group) and only FDBM (control group) respectively, and then cocultured in vitro. The densities of seeded cells, the adhesion rate and their ALP activity were measured. The complex was observed through inverted phase contrast microscope and scanning electron microscope to evaluate the interaction between cells and FDBM. Another group of second generation of BMSCs (cell density 5 × 105 /mL) were seeded onto the Cad-II modified FDBM (experimental group) and only FDBM (control group) respectively, and then cocultured in vitro too. The ALP activity and osteocalcin immunohistochemical was measured. Results There was no significant difference in cell prol iferation between experimental group and control group. The adhesion rate of cells in the experimental group was 87.41% ± 5.19%, higher than that in the the control group 35.56% ± 1.75% (P lt; 0.01); the densities of seeded cells reached 5.0 × 105, showing significant difference compared with the control group (2.6 × 104, P lt; 0.05). Inverted phase contrast microscope showed that in the experimental group, more cultured BMSCs pasted in the hole and edge of the scaffold than that in the control group. HE staining showed the densities of seeded cells in the experimental group was higher than that in the control group. Scanning electron microscope showed that in the experimental group, a lot of cultured BMSCs adhered, spreaded in the scaffold, in the control group only a few BMSCs unevenly distributed in the scaffold. After 7 days of culture, the cultured BMSCs on modified FDBM expressed higher ALP activity; after 14 days of culture, the ALP activity (29.33 ± 1.53) was higher than that cultured on unmodified FDBM (18.31 ± 1.32), the positive rates of osteocucl in were 83% ± 7% in the experimental group and 56% ± 7% in the control group, showing significant difference (P lt; 0.01). Conclusion Cad-II enhanced cell adhesion to FDBM and promoted BMSCs differentiate to osteoblast, but no obvious effects were observed in cell prol iferation.
Objective To prepare a new plastic bone filler material with adhesive carrier and matrix particles derived from human bone, and evaluate its safety and osteoinductive ability through animal tests. MethodsThe human long bones donated voluntarily were prepared into decalcified bone matrix (DBM) by crushing, cleaning, and demineralization, and then the DBM was prepared into bone matrix gelatin (BMG) by warm bath method, and the BMG and DBM were mixed to prepare the experimental group’s plastic bone filler material; DBM was used as control group. Fifteen healthy male thymus-free nude mice aged 6-9 weeks were used to prepare intermuscular space between gluteus medius and gluteus maximus muscles, and all of them were implanted with experimental group materials. The animals were sacrificed at 1, 4, and 6 weeks after operation, and the ectopic osteogenic effect was evaluated by HE staining. Eight 9-month-old Japanese large-ear rabbits were selected to prepare 6-mm-diameter defects at the condyles of both hind legs, and the left and right sides were filled with the materials of the experimental group and the control group respectively. The animals were sacrificed at 12 and 26 weeks after operation, and the effect of bone defect repair were evaluated by Micro-CT and HE staining. Results In ectopic osteogenesis experiment, HE staining showed that a large number of chondrocytes could be observed at 1 week after operation, and obvious newly formed cartilage tissue could be observed at 4 and 6 weeks after operation. For the rabbit condyle bone filling experiment, HE staining showed that at 12 weeks after operation, part of the materials were absorbed, and new cartilage could be observed in both experimental and control groups; at 26 weeks after operation, the most of the materials were absorbed, and large amount of new bone could be observed in the 2 groups, while new bone unit structure could be observed in the experimental group. Micro-CT observation showed that the bone formation rate and area of the experimental group were better than those of the control group. The measurement of bone morphometric parameters showed that the parameters at 26 weeks after operation in both groups were significantly higher than those at 12 weeks after operation (P<0.05). At 12 weeks after operation, the bone mineral density and bone volume fraction in the experimental group were significantly higher than those in the control group (P<0.05), and there was no significant difference between the two groups in trabecular thickness (P>0.05). At 26 weeks after operation, the bone mineral density of the experimental group was significantly higher than that of the control group (P<0.05). There was no significant difference in bone volume fraction and trabecular thickness between the two groups (P>0.05). Conclusion The new plastic bone filler material is an excellent bone filler material with good biosafety and osteoinductive activity.
ObjectiveTo evaluate the physical and chemical properties, immunogenicity, and osteogenesis of two antigen-extracted xenogeneic bone scaffolds—decalcified bone matrix (DBM) and calcined bone.MethodsBy removing the inorganic and organic components of adult pig femus, xenogeneic DBM and calcined bone were prepared respectively. The density and pH value of the two materials were measured and calculated, the material morphology and pore diameter were observed by scanning electron microscope, and the surface contact angle was measured by automatic contact angle measuring instrument. The safety, osteogenic activity, and immunogenicity of the two materials were evaluated by cytotoxicity test, osteoblast proliferation test, DNA residue test, and human peripheral blood lymphocyte proliferation test. The two materials were implanted into the 5 mm full-thickness skull defect of 6-week-old male Sprague Dawley rats (the blank control group was not implanted with materials). The materials were taken at 4 and 8 weeks after operation, the repair effect of the materials on the rat skull was observed and evaluated by gross observation, Micro-CT scanning, and HE staining observation.ResultsCompared with calcined bone, DBM has lower density and poor hydrophilicity; the pH value of the two materials was 5.5-6.1, and the pore diameter was 160-800 μm. The two materials were non-cytotoxic and could promote the proliferation of osteoblasts. The absorbance (A) values of osteoblast proliferation at 1, 4, and 7 days in the DBM group were significantly higher than those in the calcined bone group (P<0.05). The DNA residues of the two materials were much lower than 50 ng/mg dry weight, and neither of them could stimulate the proliferation and differentiation of human peripheral blood lymphocytes. The results of animal experiments in vivo showed that the bone volume/total volume (BV/TV) in DBM group and calcined bone group were significantly higher than that in blank control group at 4 weeks after operation (P<0.05), and that in calcined bone group was significantly higher than that in DBM group (P<0.05); at 8 weeks after operation, there was no significant difference in BV/TV between groups (P>0.05). HE staining showed that at 4 and 8 weeks after operation, the defect in the blank control group was filled with fibrous connective tissue, the defect was obvious, and no bone growth was found; the defect in DBM group and calcined bone group had been repaired to varying degrees, and a large number of new bone formation could be seen. The material degradability of DBM group was better than that of calcined bone group.ConclusionThe physical and chemical properties and degradability of the two kinds of xenogeneic bone scaffolds were slightly different, both of them have no immunogenicity and can promote the repair and reconstruction of skull defects in rats.
Objective To introduce an injectable andin situ gelling gelatin hydrogel, and to explore the possibility as a carrier for demineralized bone matrix (DBM) powder delivery. Methods First, thiolated gelatin was prepared and the thiol content was determined by Ellman method, and then the injectable andin situ gelling gelatin hydrogel (Gel) was formed by crosslinking of the thiolated gelatin and poly (ethylene oxide) diacrylate and the gelation time was determined by inverted method. Finally, the DBM-Gel composite was prepared by mixing Gel and DBM powder. The cytotoxicity was tested by live/dead staining and Alamar blue assay of the encapsulated cells in the DBM-Gel. Forin vitro cell induction, C2C12 cells were firstly incubated onto the surface of the DBM and then the composite was prepared. The experiment included two groups: DBM-Gel and DBM. The alkaline phosphatase (ALP) activity was determined at 1, 3, 5,and 7 days after culture.In vivo osteoinductivity was evaluated using ectopic bone formation model of nude rats. Histological observation and the ALP activity was measured in DBM-Gel and DBM groups at 4 weeks after implantation. Results The thiol content in the thiolated gelatin was (0.51±0.03) mmol/g determined by Ellman method. The gelation time of the hydrogel was (6±1) minutes. DBM powder can be mixed with the hydrogel and injected into the implantation site within the gelation time. The cells in the DBM-Gel exhibited spreading morphology and connected each other in part with increasing culture time. The viability of the cells was 95.4%±1.9%, 97.3%±1.3%, and 96.1%±1.6% at 1, 3, and 7 days after culture, respectively. The relative proliferation was 1.0±0.0, 1.1±0.1, 1.5±0.1, and 1.6±0.1 at 1, 3, 5, and 7 days after culture respectively.In vitro induction showed that the ALP activity of the DBM-Gel group was similar to that of the DBM group, showing no significant difference (P>0.05). With increasing culture time, the ALP activities in both groups increased gradually and the activity at 5 and 7 days was significantly higher than that at 1 and 3 days (P<0.05), while there was no significant difference between at 1 and 3 days, and between 5 and 7 days (P>0.05). At 4 weeks after implantationin vivo, new bone and cartilage were observed, but no bone marrow formation in DBM-Gel group; in DBM group, new bone, new cartilage, and bone marrow formation were observed. The histological osteoinduction scores of DBM-Gel and DBM groups were 4.0 and 4.5, respectively. The ALP activities of DBM-Gel and DBM groups were respectively (119.4±22.7) and (146.7±13.0) μmol/mg protein/min, showing no significant difference (t=–2.085,P=0.082). Conclusion The injectable andin situ gelling gelatin hydrogel for delivery of DBM is feasible.
Objective To evaluate the tissue response induced by three kinds of bone transplantation materials implanted in rat so as to provide proper evidence for their cl inical appl ication. Methods Thirty-six healthy mature Sprague- Dawly mice, weighing from 229 g to 358 g, were randomly assigned to groups A and B (n=18). Three kinds of materials wereimplanted into muscles of rats. Calcium sulfate (CS) granular preparations and allogeneic demineral ized bone matrix (DBM) were transplanted into the left (group A1) and right (group A2) thigh muscle pouches of group A. Respectively, whereas xenogenic DBM were transplanted into the left (group B1) thigh muscle pouches of group B and the right (group B2) sites were taken as control without implant. The samples (n=6) were collected to make the observation of gross and histology and to analyze histological score after 2, 4, and 6 weeks. Results The gross observation: implanted materials were gradually absorbed at late stage in group A1. No obvious degradation and absorption, but fibrosis of tissues were observed in group A2 and B1. The inflammatory reactions were more severe in groups A2 and B1. In group B2, only the changes of scar were seen at operative site. The histological observation: no obvious inflammatory reactions were seen in group A1, CS were gradually absorbed and completely absorbed at 6 weeks, while fibrosis of tissues increased at late stage. Inflammatory reactions in group A2 and group B1 were alleviated gradually, no obvious absorption and degradation were observed. The different two DBM could induce granulation tissues and bone formation at different sites and secondary fibrosis with no obvious immune response was observed. In group B2, there was an increase in collagen fiber density and angiogenesis at late stage. The scores of inflammatory infiltration were significantly higher in groups A2, B1 than in groups A1, B2 (P lt; 0.05), and the scores of fibrosis was larger in groups A1, A2 and B1 than in group B2 (P lt; 0.05). Conclusion CS has rapid dissolution and good biocompatibil ity. It is a good replaceable packing materials of bone defects in some upper l imb’s or acute bone fracture. Both of two DBM have biocompatibil ity and osteoinductive potential, which dissolution are very slow. Due to these capacity, they can be served as an ideal materials in treatment of lower l imb’s bone defect and nonunion.
Objective To investigate whether combining use of platelet-rich plasma (PRP) and decalcified bone matrix (DBM) has synergistic action on promoting bone consol idation and heal ing. Methods Forty male New Zealand rabbits (weighing 2.2-2.8 kg) were randomly divided into 4 groups (n=10). The whole blood was extracted from the central aural artery and PRP was prepared with the Landesberg’s method. An 1 cm-defect was made below the tibiofibular joint of the lefttibia through osteotomy. In group A, defect was repaired by distraction osteogenesis (1 cm); in group B, defect was repaired with 0.5 cm DBM and then by distraction osteogenesis (0.5 cm); in group C, defect was repaired by distraction osteogenesis (1 cm) and local injection of 1 mL PRP; in group D, defect was repaired by 0.5 cm DBM combined with 1 mL PRP and then by distraction osteogenesis (0.5 cm). Then lengthening started at 7 days after operation, at a rate of 1 mm/day and 0.5 mm every time for 10 days (groups A and C) or for 5 days (groups B and D). After the lengthening, the consolidation was performed. The X-ray films were taken at 0, 12, 17, 27, and 37 days after operation. At 37 days after operation, the tibial specimens were harvested for Micro-CT scanning, three-dimensional reconstruction and biomechanical test. Results The X-ray films showed that new bone formation in groups B and C was obviously better than that in groups A and D at 37 days. The bone mineral density (BMD), bone mineral content (BMC), and bone volume fraction (BVF) of groups B and C were significantly higher than those of groups A and D (P lt; 0.05); the BMD and BMC of group C were significantly higher than those of group B (P lt; 0.05); the BVF had no significant difference between groups B and C (P gt; 0.05). There was no significant difference in BMD, BMC, and BVF between groups A and D (P gt; 0.05). The trabecula number (Tb.N) of group C was significantly more than that of other groups (P lt; 0.05), and the trabecula spacing (Tb.Sp) of group C was significantly smaller than that of other groups (P lt; 0.05), but no significant differencewas found among other groups (P gt; 0.05). There was no significant difference in the trabecula thickness among 4 groups (P gt; 0.05). The ultimate angular displacement had no significant difference among 4 groups (P gt; 0.05). The maximum torque of groups B and C was significantly higher than that of groups A and D (P lt; 0.05); the maximum torque of group C was significantly higher than that of group B (P lt; 0.05); no significant difference was found between groups A and D (P gt; 0.05). Conclusion In the rabbit bone defect/lengthening model, local injection of PRP can enhance bone consol idation effectively during consol idation phase. In normal distraction rate, DBM can promote bone consol idation during distraction osteogenesis. In the early stage of distraction osteogenesis, combining use of DBM and PRP can not further promote bone consolidation and healing.
Objective To explore the method of fabricating freeze-dried demineralized bone matrix with nanoscale topography (nFDBM) and to investigate the feasibility of reconstruction of tissueengineered bone with the novel scaffold. Methods Allogenic dogs’ phalangeal cortical bone was fabricatedinto freeze-dried demineralized bone (FDBM) with modified Urist’s method. FDBM was subjected toNd∶YAG laser irradiation under special conditions. The surface topography was identified by atomic force microscope(AFM) and scanning electron microscope (SEM). The osteoblasts were induced from autologous mesenchymal stem cells (MSCs) and mixed with nFDBM and FDBM in vitro.The effects of the different topography oncellbehavior was identified by SEM. The complex of nFDBM and osteoblasts wereimplanted into fascial bags on dogs’ back (experimental group A) and dogs’ phalangeal defects on right (experimental group C), while FDBMosteoblast complex (control group B) and unique FDBM (control group D) were implanted into the corresponding sites on left as control groups. The osteogenic status was assessed by X-ray, HE and SEM at 4, 8 and 12 weeks after surgery. Results The surface of FDBM subjected to Nd∶YAG laser irradiation resulted in well-defined three-dimensional nanoscale grooves (150 nm in depth and 600 to 800 nm in width). When the osteoblasts were implanted on the scaffold, the cells adhering to nFDBM were morethan those to FDBM and secreted more extracellular matrix. Either new bone-likethin layer on the nanoscale surface or a lot of new boneformation inner the experimental complex was observed by HE after 12 weeks of surgery and the experimental complexes were partially calcified at the same time, while the control groups almost had no osteogenic phenomena. Conclusion Nd∶YAG laser could produce nanoscale grooves on the FDBM surface. The nanoscale grooves are conductive to adherence, proliferation and matrix secretion of osteoblasts. Complexes by tissue engineering and nanoscale technology have some osteogenic abilities in vivoafter implanted the animal model.
Objective To fabricate a novel composite scaffold with acellular demineralized bone matrix/acellular nucleus pulposus matrix and to verify the feasibility of using it as a scaffold for intervertebral disc tissue engineering through detecting physical and chemical properties. Methods Pig proximal femoral cancellous bone rings (10 mm in external diameter, 5 mm in internal diameter, and 3 mm in thickness) were fabricated, and were dealed with degreasing, decalcification, and decellularization to prepare the annulus fibrosus phase of scaffold. Nucleus pulposus was taken from pig tails, decellularized with Triton X-100 and deoxycholic acid, crushed and centrifugalized to prepare nucleus pulposus extracellular mtrtix which was injected into the center of annulus fibrosus phase. Then the composite scaffold was freeze-dryed, cross-linked with ultraviolet radiation/carbodiimide and disinfected for use. The scaffold was investigated by general observation, HE staining, and scanning electron microscopy, as well as porosity measurement, water absorption rate, and compressive elastic modulus. Adipose-derived stem cells (ADSCs) were cultured with different concentrations of scaffold extract (25%, 50%, and 100%) to assess cytotoxicity of the scaffold. The cell viability of ADSCs seeded on the scaffold was detected by Live/Dead staining. Results The scaffold was white by general observation. The HE staining revealed that there was no cell fragments on the scaffold, and the dye homogeneously distributed. The scanning electron microscopy showed that the pore of the annulus fibrosus phase interconnected and the pore size was uniform; acellular nucleus pulposus matrix microfilament interconnected forming a uniform network structure, and the junction of the scaffold was closely connected. The novel porous scaffold had a good pore interconnectivity with (343.00 ± 88.25) µm pore diameter of the annulus fibrosus phase, 82.98% ± 7.02% porosity and 621.53% ± 53.31% water absorption rate. The biomechanical test showed that the compressive modulus of elasticity was (89.07 ± 8.73) kPa. The MTT test indicated that scaffold extract had no influence on cell proliferation. Live/Dead staining showed that ADSCs had a good proliferation on the scaffold and there was no dead cell. Conclusion Novel composite scaffold made of acellular demineralized bone matrix/acellular nucleus pulposus matrix has good pore diameter and porosity, biomechanical properties close to natural intervertebral disc, non-toxicity, and good biocompatibility, so it is a suitable scaffold for intervertebral disc tissue engineering.
OBJECTIVE To investigate the feasibility of freeze-dried demineralized bone matrix (FDBM) as scaffold material in bone tissue engineering. METHODS Osteoblasts which were isolated from cranial periosteum of New Zealand rabbits were cultured as the seeding cells, then the cells were cocultured with heterogenous FDBM in vitro. The cell-material complex was observed under phase microscope, light microscope and electronic scanning microscope in order to evaluate the interaction between cells and FDBM. RESULTS Eight hours after coculture, the osteoblasts adhered to FDBM scaffolds. Seven days later, the osteoblasts differentiated and proliferated in FDBM network. Extracellular matrix was secreted and calcium nodes were formed among osteoblasts. CONCLUSION FDBM is a good scaffold material for the bone tissue engineering.