Objective To evaluate the directional significance of SurgiCase software in free fibula mandibular reconstruction. Methods Between September 2010 and March 2012, 10 patients with mandibular defect underwent free fibula mandibular reconstruction. There were 7 males and 3 females, with an age range of 19-43 years (mean, 27 years). The extent of lesions was 7 cm × 5 cm to 16 cm × 8 cm. In each case, three-dimensional spiral CT scan of the maxilla, mandible, and fibula was obtained before surgery. The CT data were imported into the SurgiCase software and the virtual surgery planning was performed. After that, the mandibular rapid prototyping was made according to customized design. The reconstruction surgery was then carried out using these preoperative data. During actual surgery, the extent of mandibular defect was from 6 cm × 3 cm to 16 cm × 5 cm; the length of fibula which was used to reconstruct mandible was 6-17 cm; and the area of flap was from 6 cm × 5 cm to 16 cm × 6 cm. Results Preoperative data could not be applied because the intraoperative size of tumor was larger than preoperative design in 1 case of mandibular ameloblastoma, and the fibula was shaped according to the actual osteotomy location; operations were performed successfully according to preoperative design in the other 9 patients. The operation time was 5-7 hours (mean, 6 hours). Primary healing of incision was obtained, without early complications. Ten patients were followed up 1 year. At last follow-up, 8 patients were satisfactory with the appearance and 2 patients complained with unsatisfied wide facial pattern. The panoramic radiograghs showed good bone healing. The range of mouth opening was 2.5-3.5 cm. Conclusion SurgiCase software can provide precise data for free fibula mandibular reconstruction during surgery. It can be applied widely in clinic.
Objective To explore the feasibility and effectiveness of mixed reality technology for localizing perforator vessels in the repair of mandibular defects using free fibular flap. Methods Between June 2020 and June 2023, 12 patients with mandibular defects were repaired with free fibular flap. There were 8 males and 4 females, with an average age of 61 years (range, 35-78 years). There were 9 cases of ameloblastomas and 3 cases of squamous cell carcinomas involving the mandible. The disease duration ranged from 15 days to 2 years (median, 14.2 months). The length of mandibular defects ranged from 5 to 14 cm (mean, 8.5 cm). The area of soft tissue defects ranged from 5 cm×4 cm to 8 cm×6 cm. Preoperative enhanced CT scans of the maxillofacial region and CT angiography of the lower limbs were performed, and the data was used to create three-dimensional models of the mandible and lower limb perforator vessels. During operation, the mixed reality technology was used to overlay the three-dimensional model of perforator vessels onto the body surface for harvesting the free fibular flap. The length of the fibula harvested ranged from 6 to 15 cm, with a mean of 9.5 cm; the size of the flap ranged from 6 cm×5 cm to 10 cm×8 cm. The donor sites were sutured directly in 7 cases and repaired with free skin grafting in 5 cases. Results Thirty perforator vessels were located by mixed reality technology before operation, with an average of 2.5 vessels per case; the distance between the exit point of the perforator vessels located before operation and the actual exit point ranged from 1 to 4 mm, with a mean of 2.8 mm. All fibular flaps survived; 1 case had necrosis at the distal end of flap, which healed after dressing changes. One donor site had infection, which healed after anti-inflammatory dressing changes; the remaining incisions healed by first intention, and the grafts survived smoothly. All patients were followed up 8-36 months (median, 21 months). The repaired facial appearance was satisfactory, with no flap swelling. Among the patients underwent postoperative radiotherapy, 2 patients had normal bone healing and 1 had delayed healing at 6 months. Conclusion In free fibular flap reconstruction of mandibular defects, the use of mixed reality technology for perforator vessel localization can achieve three-dimensional visualization, simplify surgical procedures, and reduce errors.