1992年,循证医学(evidence-based medicine,EBM)倡导者提出新"范式",即卫生研究证据是对个体病人及卫生系统决策的最好基础.该方法原意是拟除去传统医学知识体系仅关注疾病本身的病理生理过程及临床经验的积累,因此在2001年被lt;纽约时代杂志gt;评为最具影响力的理论之一.本文回顾了循证医学的产生、发展、哲学局限性和临床实践的挑战.指出EBM的演变、发展早已超出它原来(误解的)概念,即EBM有可能替代传统医学.EBM现正力求去增强而不是替代个人的临床经验及了解疾病的机制.并且EBM一定要继续发展、并探讨一系列的问题包括加强科学基础,伦理道德的重要性及其有关传播及应用的实际事务.例如,为了促进科学研究成果用于临床,证据往往都是从经选择过的人群的不完整证据而来,这些人群仅能从那些贵重技术中得到一些边缘性的好处.而证据的应用就会把这些有限的好处普遍化,由此引发出一系列问题即有多少人和谁能用得起这些新的疗法.因此循证医学的倡导者希望医生及用户关注那些来自临床研究、有效且适于临床应用的好证据.而要达到此目标还需做很多的工作.
Analyzing the influence of mixed emotional factors on false memory through brain function network is helpful to further explore the nature of brain memory. In this study, Deese-Roediger-Mc-Dermott (DRM) paradigm electroencephalogram (EEG) experiment was designed with mixed emotional memory materials, and different kinds of music were used to induce positive, calm and negative emotions of three groups of subjects. For the obtained false memory EEG signals, standardized low resolution brain electromagnetic tomography algorithm (sLORETA) was applied in the source localization, and then the functional network of cerebral cortex was built and analyzed. The results show that the positive group has the most false memories [(83.3 ± 6.8)%], the prefrontal lobe and left temporal lobe are activated, and the degree of activation and the density of brain network are significantly larger than those of the calm group and the negative group. In the calm group, the posterior prefrontal lobe and temporal lobe are activated, and the collectivization degree and the information transmission rate of brain network are larger than those of the positive and negative groups. The negative group has the least false memories [(73.3 ± 2.2)%], and the prefrontal lobe and right temporal lobe are activated. The brain network is the sparsest in the negative group, the degree of centralization is significantly larger than that of the calm group, but the collectivization degree and the information transmission rate of brain network are smaller than the positive group. The results show that the brain is stimulated by positive emotions, so more brain resources are used to memorize and associate words, which increases false memory. The activity of the brain is inhibited by negative emotions, which hinders the brain’s memory and association of words and reduces false memory.
Brain-computer interaction (BCI) is a transformative human-computer interaction, which aims to bypass the peripheral nerve and muscle system and directly convert the perception, imagery or thinking activities of cranial nerves into actions for further improving the quality of human life. Magnetoencephalogram (MEG) measures the magnetic field generated by the electrical activity of neurons. It has the unique advantages of non-contact measurement, high temporal and spatial resolution, and convenient preparation. It is a new BCI driving signal. MEG-BCI research has important brain science significance and potential application value. So far, few documents have elaborated the key technical issues involved in MEG-BCI. Therefore, this paper focuses on the key technologies of MEG-BCI, and details the signal acquisition technology involved in the practical MEG-BCI system, the design of the MEG-BCI experimental paradigm, the MEG signal analysis and decoding key technology, MEG-BCI neurofeedback technology and its intelligent method. Finally, this paper also discusses the existing problems and future development trends of MEG-BCI. It is hoped that this paper will provide more useful ideas for MEG-BCI innovation research.
Speech expression is an important high-level cognitive behavior of human beings. The realization of this behavior is closely related to human brain activity. Both true speech expression and speech imagination can activate part of the same brain area. Therefore, speech imagery becomes a new paradigm of brain-computer interaction. Brain-computer interface (BCI) based on speech imagery has the advantages of spontaneous generation, no training, and friendliness to subjects, so it has attracted the attention of many scholars. However, this interactive technology is not mature in the design of experimental paradigms and the choice of imagination materials, and there are many issues that need to be discussed urgently. Therefore, in response to these problems, this article first expounds the neural mechanism of speech imagery. Then, by reviewing the previous BCI research of speech imagery, the mainstream methods and core technologies of experimental paradigm, imagination materials, data processing and so on are systematically analyzed. Finally, the key problems and main challenges that restrict the development of this type of BCI are discussed. And the future development and application perspective of the speech imaginary BCI system are prospected.
Rapid serial visual presentation (RSVP) is a type of psychological visual stimulation experimental paradigm that requires participants to identify target stimuli presented continuously in a stream of stimuli composed of numbers, letters, words, images, and so on at the same spatial location, allowing them to discern a large amount of information in a short period of time. The RSVP-based brain-computer interface (BCI) can not only be widely used in scenarios such as assistive interaction and information reading, but also has the advantages of stability and high efficiency, which has become one of the common techniques for human-machine intelligence fusion. In recent years, brain-controlled spellers, image recognition and mind games are the most popular fields of RSVP-BCI research. Therefore, aiming to provide reference and new ideas for RSVP-BCI related research, this paper reviewed the paradigm design and system performance optimization of RSVP-BCI in these three fields. It also looks ahead to its potential applications in cutting-edge fields such as entertainment, clinical medicine, and special military operations.