Objective To investigate the management of the soft tissue defect after the Achilles tendon repair. Methods From April 1996 to April 2006, 24 patients(17 males, 7 females; aged 16-59 years), who suffered from postoperative Achilles tendon exposure caused by local soft-tissue necrosis after the Achilles tendon repair, were treated and evaluated. Of the 24patients, 8 had an original open injury (machinecrush injury in 2 patients, heavy-object press injury in 3, motorcycle wheel crush injury in 3) and 16 patients had a closed injury (sports injury). In their treatment, the transferof the sural neurovascular flap was performed on 8 patients and the transfer ofthe saphenous neurovascular flap was performed on 3 patients. The secondary Achilles tendon repair was performed on 13 patients before the neurovascular flap transfer was performed. The time between the injury and the operation was 9-76 days, and the time between the Achilles tendon expousure and the operation was 3-65 days. Results All the flaps survived and the Achilles tendon exposure was well covered by the flaps of good texture. Eighteen patients followed up for 6 months to 24 months had no flap complication, and the two point discrimination of the flaps was 12-20 mm. The AOFASAnkleHindfoot Scale assessment revealed that 8 patients had an excellent result, 6 had a good result, 3 had a fair result, and just 1 had a poor result, with theexcellent and good results accounting for 77.8%. Sixteen patients (89%) were able toperform a tip-toe stance on their operative sides, and only 3 of them complained a loss of plantarflexion strength. However, 2 patients still could not perform the tip-toe stance. Conclusion The Achilles tendon repair, ifnot well performed, can result in the local soft-tissue necrosis and the subsequent Achilles tendon exposure. If those complications occur, the neurovascular flap transfer should be performed as soon as possible; if necessary, the secondary Achilles tendon repair should be performed, too.
【Abstract】 Objective To investigate the operative techniques and cl inical results of repairing the soft tissue defectsof forearm and hand with free peroneal perforator-based sural neurofasciocutaneous flap. Methods From May 2006 toJanuary 2007, 6 patients including 5 males and 1 female were treated. Their ages ranged from 22 years to 51 years. They were injured by motor vehicle accidents (2 cases), or crushed by machines (4 cases), with skin defect of hand in 1 case, skin defect of hand associated with tendon injuries and metacarpal fractures in 2 cases, skin defect of forearm in 2 cases, and forearm skin defects with fractures of radius and ulna in 1 case. The areas of soft tissue defect ranged from 16 cm × 7 cm to 24 cm × 10 cm. The debridement and the primary treatment to tendons or bones were performed on emergency. And free flaps were transplanted when the wound areas were stable at 4 to 7 days after the emergent treatment. During the operation, the flaps were designed along the axis of the sural nerve nutrient vessels according to the shape and size of the soft tissue defects, with the peroneal perforator above the lateral malleolus as the pedicle and along with a part of the peroneal artery for vascula anastomosis. Then the flaps were harvested and transferred to the reci pient sites with the peroneal vartey anastomosed to the radial (or ulnar) artery and the peroneal veins to one of the radial (or ulnar) veins and the cephal ic vein, respectively. The flap size ranged from 18 cm × 8 cm to 25 cm × 12 cm. The donor areas were closed by skin grafts. Results The 5 flaps survived after the surgery. Partial inadequate venous return and distal superficial necrosis happened in only 1 case, which also got secondary heal ing by changing dressing and anti-infective therapy. The donor sites reached primary heal ing completely. The followed-up in all the patients for 6 to 13 months revealed that the appearance and function of the flaps were all satisfactory, and no influence on ambulation of donor site was found. Conclusion Peroneal perforator-based sural neurofasciocutaneous flap has the advantages of favourable appearance, constant vascular pedicle, rel iable blood supply, large size of elevation and minor influence on the donor site. And the free transfer of this flap is an ideal procedure to repair the large soft tissue defects of forearm and hand.
Objective To review the methods and progress on repairing hand injury with dorsal neurocutaneous vascular flap. Methods Recent l iterature on repairing hand injury with dorsal neurocutaneous vascular flap was reviewed and analyzed. Results Island fascial flap was designed on the radial or ulnar side of the dorsum of the hand based on the anatomical study of the dorsum of the hand, and the choice of pedicle depended upon the position of wound. Conclusion Repairing hand injury with dorsal neurocutaneous vascular flap is easy to perform and in l ine with the principle of repairing wounds in proximity. It is one of the effective methods of repairing wounds of the hand.
Objective To investigate a best method of obtaining the sural neurofasciocutaneous flap by observing the models of different pedicles based sural neurofasciocutaneous flaps in rabbits and the effect of different pedicles on the survival of the flaps. Methods Forty adult New Zealand rabbits (male or female, weighing 2.5-3.0 kg) were randomly divided into 4 groups (10 rabbits in each). The flaps of 7 cm × 1 cm were designed at the lateral hind legs, and the pedicle was 0.5 cmin length. In group A, the flaps were elevated based on a single perforator pedicle; in group B, the flaps were elevated based on fascia pedicle; in group C, the flaps were elevated based on perforator-plus fascia pedicle; and in group D, the flaps were elevated and sutured in situ. At 7 days after operation, the flap survival rate was recorded, and the blood flow in the center of the flap was monitored by laser doppler flowmetry. The perfusion unit (PU) was measured. Results After operation, the flaps had no obvious swell ing, and the flaps had good color at the proximal end, but pale at the distal end in groups A and B. Obvious swell ing was observed with pale color at the distal flaps in group C, but swell ing decreased gradually. However, the skin color became dark gradually in group D after operation. The flap survival rates were 74.0% ± 2.7%, 60.0% ± 2.5%, 75.0% ± 3.5%, and 0 in groups A, B, C, and D respectively after 7 days of operation. The PU values were 83.39 ± 4.25, 28.96 ± 13.49, 81.85 ± 5.93, and 8.10 ± 3.36 in groups A, B, C, and D respectively. There were significant differences in flap survival rates and PU values between groups A, B, C and group D (P lt; 0.05). Significant differences were found between groups A, C and group B (P lt; 0.05), but no significant difference between group A and group C (P gt; 0.05). Conclusion The sural neurofasciocutaneous flap based on a single perforator pedicle has a rel iable blood supply and enough venous drainage, which is one of the best methods to obtain the sural neurofasciocutaneous flap.