Objective To observe the etiological factors and variation of effects of nontraumatic severe vitreous hemorrhage. Methods A total of 1107 patients (1202 eyes) with nontraumatic severe vitreous hemorrhage who underwent vitrectomy from January 2005 to December 2011 were enrolled in this study. The patients were divided into A group (444 eyes of 415 patients were operated between January 2005 and December 2008) and group B (758 eyes of 692 patients between January 2009 and December 2011) according to admission date. The etiological factors and variations were recorded and retrospectively analyzed. Results Of all 444 eyes in group A, 156 eyes were due to retinal vein occlusion (RVO), 117 eyes associated with proliferative diabetic retinopathy (PDR), 61 eyes with retinal hole/retinal detachment (RH/RD), 42 eyes with Eales disease, 20 eyes with exudative agerelated macular degeneration (EAMD). These diagnoses accounting for 89.19% of the total eyes, were found to be the common causes in patients with severe vitreous hemorrhage, with RVO as the most common cause. Similarly in group B, severe vitreous hemorrhage was found in 347 eyes with proliferative diabetic retinopathy (PDR), 135 eyes with retinal hole/retinal detachment (RH/RD), 133 eyes with retinal vein occlusion (RVO), 25 eyes with Eales disease, 22 eyes with exudative age-related macular degeneration (EAMD), accounting for 87.87% of the total eyes. PDR was the most common cause instead of RVO to vitreous hemorrhage in this group. The number of vitreous hemorrhages increased year by year. Conclusions PDR, RH/RD, RVO, Eales disease and EAMD are the common causes of nontraumatic severe vitreous hemorrhage. There is a trend toward an increasing proportion of PDR among the causes of vitreous hemorrhage.
Macular vitreoretinal interface abnormalities in highly myopic eyes are among the most visionthreatening diseases associated with macular retinal schisis and macular holes. To relieve the traction of the posterior vitreous cortex and to recover the anatomy of fovea for good central vision are the keys to successful repair. However, there are many controversial issues in the efficacy of the surgerical procedures including gas injection, scleral buckling and vitrectomy. How to evaluate these different surgeries and to establish standard surgical procedure options for macular vitreoretinal interface abnormalities in highly myopic eyes needs to be explored.
Objective To observe ophthalmoscopic image characteristics of central serous chorioretinopathy (CSC). Methods Twenty-one eyes of the 18 patients diagnosed with CSC were enrolled in this study.The patients included 12 males (14 eyes) and six females (seven eyes).The patients ages ranged from 26 to 47 years,with a mean age of (39.1plusmn;5.4) years. There were nine patients (11 eyes) with acute CSC, seven patients (seven eyes) with chronic CSC, and two patients (three eyes) with recurrent CSC. All the patients were examined using color fundus photography including infrared (IR), auto-fluorescence (AF), near infrared ray-auto-fluorescence (NIR-AF), fluorescein angiography (FA) and indocyanine green angiography (ICGA) photography. The ophthalmoscopic image characteristics of CSC were comparared. Results The circular serous retinal detachments of 21 eyes were depicted in color images of the ocular fundus, which in the IR showed the hypo-fluorescence. Ten eyes displayed mottled hyper-fluorescent spots associated with serous retinal detachments corresponding to the leakage points. The serous retinal detachments of 15 eyes in the AF images showed hypo-fluorescence, six eyes showed hyper-fluorescence. Fourteen eyes presented with hypo-or hyper-fluorescent spots corresponding to the leakage points, seven eyes presented without abnormal fluorescence corresponding to the leakage points. In addition, three eyes with acute CSC showed many scattered hyper-fluorescent spots, which showed hypo-fluorescence in the ICGA. The serous retinal detachment of 15 eyes exhibited hypo-fluorescence in the NIR-AF images, six eyes showed hyper-fluorescence. Fourteen eyes presented with hypo- or hyper-fluorescent spots corresponding to the leakage points, seven eyes presented without abnormal fluorescence corresponding to the leakage points. Twenty-one eyes in FA identified the leakage. Eight eyes showed regional choroidal delayed filling, 13 eyes exhibited regional choriocapillary dilatation during 1-5 minutes after injection of ICGA. During 1-5 minutes after injection of ICGA, six eyes showed more lesions than FA, three eyes showed obvious patchy hypo-fluorescence whereas the FA were normal. Conclusions CSC has its own characteristic fundus images in the IR, FA and NIR-A. FA is still the photographic method of choice, but ICGA can reveal lesions of the choroid in CSC. IR, FA and NIR-AF are not as good as FA and ICGA for detecting of leakage points.