ObjectiveTo observe the expression of probucol on high glucose-induced specificity protein 1(SP1), kelchlike ECH associated protein1 (Keap1), NF-E2-related factor 2 (Nrf2) and glutamate-cysteine ligase catalytic (GCLC) in the cultured human müller cells and preliminary study the antioxidation of the probucol on müller cells.MethodsPrimary cultured human müller cells were randomly divided into four groups: normoglycaemia group (5.5 mmol/L glucose), normoglycaemia with probucol group (5.5 mmol/L glucose+100 μmol/L probucol), hyperglycemia group (25.0 mmol/L glucose), hyperglycemia with probucol group (25.0 mmol/L glucose + 100 μmol/L probucol). Immunofluorescence staining was used to assess distribution of SP1, Keap1, Nrf2, GCLC in human Müller cells. SP1, Keap1, Nrf2 and GCLC messenger RNA (mRNA) expression was evaluated by quantitative real-time RT-PCR (qRT-PCR). Independent sample t test was used to compare the data between the two groups.ResultsAll müller cells expressed glutamine synthetase (>95%), which confirmed the cultured cells in vitro were the purification of generations of müller cells. The expressions of SP1, Keap1, Nrf2, and GCLC protein were positive in human müller cells. qRT-PCR indicated that SP1 (t=28.30, P<0.000), Keap1 (t=5.369, P=0.006), and Nrf2 (t=10.59, P=0.001) mRNA in the hyperglycemia group increased obviously compared with the normoglycaemia group; GCLC (t=4.633, P=0.010) mRNA in the hyperglycemia group decreased significantly compared with the normoglycaemia group. However, SP1 (t=12.60, P=0.000) and Keap1 (t=4.076, P=0.015) in the hyperglycemia with probucol group decreased significantly compared with the hyperglycemia group; Nrf2 (t=12.90, P=0.000) and GCLC (t=15.96, P<0.000) mRNA in the hyperglycemia with probucol group increased obviously compared with with the hyperglycemia group.ConclusionProbucol plays an antioxidant role by inhibiting the expression of SP1, Keap1 and up-regulating the expression of Nrf2, GCLC in müller cells induced by high glucose.
Objective To quantify the mRNA expression of NMDAR1 gene in the retina of eyes with acute elevation of IOP in rabbit. Methods Tweenty-six eyes of 16 rabbits were divided into three groups: Group 1: The IOP of one eye in 10 rabbits was elevated to 60 mm Hg by ante ri or chamber infusion. Group 2: The another eye of the same rabbit in group 1 was maintained the IOP to 20 mm Hg by anterior chamber infusion. Group 3: Unilat eral eyes of six rabbits were enucleated to evaluate the mRNA levels as normal control group. PCR product was identified by Southern blotting and the mRNA expression level was quantified by RT-PCR. Results The results revealed no significant difference between group 1 and group 2. Conclusion This implies that acute elevated IOP may not affect the mRNA expression level of NMDAR1 gene. (Chin J Ocul Fundus Dis, 2001,17:50-51)
ObjectiveTo observe the expression of glutamate (Glu) andγ-aminobutyric acid (GABA) in the retina of diabetic rats which were intervened later by insulin intensive therapy, and to investigate the mechanism of metabolic memory of hyperglycemia which induced the retina neuropathy in diabetic rats. Methods60 Brown Norway rats were randomly divided into normal control (NC) group, diabetes mellitus (DM) group (6 weeks at DM1, 12 weeks at DM2) and metabolic memory (MM) group, 15 rats in each group. Diabetes was induced by intraperitoneal injection of streptozocin. After 6 weeks, MM group was treated with insulin intensive therapy for 6 weeks. DM1 group was sacrificed at the end of 6 weeks and other groups were sacrificed at the end of 12 weeks. High performance liquid chromatography was used to detect the amount of Glu and GABA in the rat retina. Real-time polymerase chain reaction was applied to quantify the mRNA expressions of Glutamate decarboxylase (GAD). TdT mediated dUTP nick ending labelling was used to detect cell apoptosis. ResultsThe concentration of Glu (t=6.963), GABA (t=4.385) and the ratio of Glu/GABA (t=4.163) in MM group were significantly higher than DM1 group, but the concentration of Glu (t=3.411) and GABA (t=3.709) were significantly lower than DM2 group (P < 0.05). And there was no significant difference in the ratio of Glu/GABA between MM and DM2 groups (t=1.199, P > 0.05). The level of expressions of GAD mRNA in MM group was significantly lower than DM1 group (t=3.496, P < 0.05), but higher than DM2 group (t=8.613, P < 0.05). The number of nerve cells apoptosis in MM group was significantly higher than DM1 group (t=2.584, P < 0.05), but lower than DM2 group (t=3.531, P < 0.05). ConclusionsIntensive therapy later by insulin can partially reduce the content of Glu and GABA and the rate of nerve cells apoptosis, which cannot return to normal levels, and has no effect on the rise in the ratio of Glu/GABA caused by the hyperglycemia. The disorders of Glu and GABA may participate in the metabolic memory of hyperglycemia.
Objective:To observe the effect of beta;estradiol on gluta mate concentration in rabbitsprime; retinae injured by ischemic reperfusion. Methods:Twenty r abbits ware randomly divided into two groups, the control group and the treatmen t group, with 10 rabbits in each group. Before examined by binocular flash elect roretinography (FERG), retinal ischemic reperfusion (RIR) model was induced in t h e right eyes of all the rabbits by increasing intraocular pressure to 120 mm Hg for 60 minutes; the left eyes were as the control eyes. The rabbits were hypoder mically injected with beta;estradiol (0.1 mg/kg) in treatment group and with phys i ological saline in the control group 2 hours before ischemia. The results of FER G of the right eyes in both of the 2 groups 0, 4, 8, and 24 hours after reperfus ion were record respectively and were compared with the results of FERG before r eperfusion. The retina tissue was collected after the last time of FERG. The con c entration of glutamate was detected by Hitachi L8800 amino acid analyzer. Results:In the right eyes in both of the 2 groups, the result of F ERG showed a beeli ne just after reperfusion. There was no significant difference of awave amplit u de between the 2 groups (t=1.357, 0.798, 0.835; Pgt;0.05); the b wave amplitudes i n experimental group were much higher than those in the control group (t=4.447, 2.188, 3.106; Plt;0.01). The concentration of glutamate in retina was (0.265plusmn;0.014) g/L in the right eyes and (0.207plusmn;0.013) g/L in the left eyes in the control group, and (0.231plusmn;0.007) g/L in the right eyes and (0.203plusmn;0 .014) g/L in the le ft eyes in the treatment group; the difference between the 2 groups was signific ant (F=50.807, P=0.000). There was statistical difference between righ t and left eyes both in the 2 groups and the significant difference of the right eyes betw een the two groups was also found (P=0.000); there was no statistical diffe rence of the left eyes between the 2 groups (P=0.505). Conclusion:beta;-estradiol may prevent the increase of the concentration of glutamate in retina induced by RIR to protect retinal tissue.
Objective To investigate the glutamate toxicity on inner stratum retinal neurons(ISRN) and the neurotoxicity quantity-efficacy relation. Method Retinal explants obtained from 30 neonatal mices were implanted into two pieces of 24-well culture plates (48 wells). The 48 wells were divided into three groups: control group, glutamate exposure 24 h group, and glutamate exposure with further lasting 6 h group. The retinal explants were sectioned, and then stained with HE after 24 h in vitro. The cells in retinal ganglion cells (RGCs) layer and inner nuclear layer (INL) were analyzed by light microscope at 1 000times; magnification , and the number of normal morphological cells was counted under three 1 000times; magnificat ion fields. Results Some cells in ISRN (include RGCs and INL c ells) showed pykno tic nuclei and necrosis after 24 h in control culture. Glutamate exposure 24 h group:at the 2 mmol and 4 mmol concentrations of glutamate, the situation of the normal morphological cells in ISRN had no difference from that of the control group (Pgt;0.05). At the concentration of glutamate more than or equal to 6 mmol, the number of normal morphological cells in ISRN was significantly less than that of the control group (Plt;0.05), and with the increase of glutamate concentration, the number of normal morphological cells was reduced. Glutamate exposure with fur ther lasting 6 h group: at the concentration of glutamate equal to 6 mmol, the n umber of normal morphological cells in INL was significantly less than that of the control group (Plt;0.05), while the number of normal morphological cells in RGCs layer had no difference between two groups (Pgt;0.05). At the concentration of glutamate more than or equal to 8 mmol, the number of normal morphological cels in RGC s layer and INL was significantly less than that of the control group (Plt;0.05 ). Conclusion Glutamate has the neurotoxicity for ISRN in vitro, and the effect is dose-dependant. (Chin J Ocul Fundus Dis, 2001,17:311-314)
ObjectiveTo analyze the protective mechanism of spinal cord ischemia-reperfusion injury mediated by N-methyl-D-aspartate (NMDA) receptor.MethodsA total of 42 SD rats were randomly assigned to 4 groups: a non-blocking group (n=6), a saline group (n=12), a NMDA receptor blocker K-1024 (25 mg/kg) group (n=12) and a voltage-gated Ca2+ channel blocker nimodipine (0.5 mg/kg) group (n=12). The medications were injected intraperitoneally 30 min before ischemia. The neural function was evaluated. The neuronal histologic change of spinal cord lumbar region, the release of neurotransmitter amino acids and expression of spinal cord neuronal nitric oxide synthase (nNOS) were compared.ResultsAt 8 h after reperfusion, the behavioral score of the K-1024 group was 2.00±0.00 points, which was statistically different from those of the saline group (5.83±0.41 points) and the nimodipine group (5.00±1.00 points, P<0.05). Compared with the saline group and nimodipine group, K-1024 group had more normal motor neurons (P<0.05). There was no significant difference in glutamic acid concentration in each group at 10 min after ischemia (P=0.731). The nNOS protein expression in the K-1024 group was significantly down-regulated compared with the saline group (P<0.01). After 8 h of reperfusion, the expression of nNOS protein in the K-1024 group was significantly up-regulated compared with the saline group (P<0.05).ConclusionK-1024 plays a protective role in spinal cord ischemia by inhibiting NMDA receptor and down-regulating nNOS protein expression; during the reperfusion, K-1024 has a satisfactory protective effect on spinal cord function, structure and biological activity of nerve cells.
Objective To discuss the correlation between glutamate receptor 5 (GLUR5) and the pathogenesis of intractable temporal lobe epilepsy (ITLE), through detecting the GLUR5 expression in human with ITLE and Coriaria lactone-induced rhesus monkey temporal lobe epilepsy model. Methods Fifty-four patients with ITLE treated in West China Hospital between January 2007 and December 2015 were regarded as clinical case group in this study. The other 43 patients who underwent temporal lobe removal decompression surgery in the same time period due to trauma, tumor or large area cerebral hemorrhage complicated with cerebral hernia were designated as the clinical control group. Quantitive polymerase chain reaction (PCR) and Western blot methods were used to detect mRNA and protein levels of GLUR5. Western blot was also used to detect the GLUR5 protein level in the hippocampus and temporal lobe tissues of Coriaria lactone-induced rhesus monkey epilepsy model, and the result was compared with that of animal controls. Results Quantitive PCR results showed that the expression ratio (R value) of GLUR5 in the temporal lobe of the clinical case group to the clinical control group was 0.262, without significant difference (P>0.05), while theR value in the hippocampus was 4.896, with a significant difference (P<0.05). The amplification curve showed that the GLUR5 level in the hippocampus of the clinical case group was higher than that of the clinical control group, but the GLUR5 mRNA level in the temporal lobe tissue was not significantly changed. GLUR5 PCR amplified product electrophoresis showed that the amplified fragment was 161 bp. Western blot analysis showed that the GLUR5/actin value of the temporal lobe tissue in the clinical case group was 2.172±0.063, while the value in the clinical control group was 2.142±0.060, and the difference was not statistically significant (P>0.05). The GLUR5/actin value of the hippocampus in the clinial case group was 2.548±0.509, while it was 1.584±0.415 in the clinial control group, and the difference was statistically significant (P<0.05). The GLUR5/actin value of the hippocampus of the rhesus monkey model of epilepsy was 1.007±0.034, and it was 1.001±0.032 in the animal control group, and the difference was not statistically significant (P>0.05). The GLUR5/actin value of the temporal lobe tissue in the animal experimental group of rhesus model of epilepsy was 0.763±0.026, and it was 0.742±0.034 in the animal control group, and the difference was not statistically significant (P>0.05). The target protein bands showed that GLUR5 protein expression in the temporal lobe tissue and hippocampus of the rhesus model of epilepsy and animal controls was not significantly different (P>0.05). Conclusions GLUR5 participates in the pathogenesis of human ITLE by acting on the hippocampus. The expression of GLUR5 in human ITLE is abnormal, but the expression of GLUR5 is not changed in the rhesus model of epilepsy. The abnormal expression of GLUR5 may play a role in the pathogenesis of ITLE.
Objective To evaluate the inhibiting effect of adenosine on rat retinal ganglion cells (RGC) death induced by P2X7 and N-methyl-D-aspartate (NMDA) receptor. Methods (1) Long-Evan neonatal rats were back labeled with aminostilbamidine to identify RGC. The viability of RGC affected by P2X7 excitomotor BzATP (50 mu;mol/L), glutamate receptor excitomotor NMDA (100 mu;mol/L) and adenosine (300 mu;mol/L) was detected. (2) RGC from the retinae of unlabeled neonatal rats were cultured in vitro. After labeled with Fura-2 methyl acetate, an intracellular calcium indicator, the effect of BzATP, NMDA and adenosine on intracellular Ca2+ level was detected byCa2+ imaging system. Results Both BzATP (50 mu;mol/L) and NMDA(100 mu;mol/L) could kill about 30% of the RGC. Cell death was prevented by adenosine (300 mu;mol/L) with the cell viability increased from (68.9plusmn;2.3)% and (69.9plusmn;3.2)% to (91.2plusmn;3.5)% (P<0.001) and (102.1plusmn;3.9)% (P<0.001), respectively. BzATP (50 mu;mol/L) led to a large, sustained increase of intracellular Ca2+ concentration to (1183plusmn;109) nmol/L. After the adenosine intervened, Ca2+ concentration increased slightly to (314plusmn;64) nmol/L (P<0.001). Conclusion Adenosine may prevent RGC death and increase of intracellular Ca2+ concentration from P2X7and NMDA receptor stimulation. (Chin J Ocul Fundus Dis, 2007, 23: 133-136)
ObjectiveExplore the mechanism of action of Kruppel-like factor 4 (KLF4) in the oxidative damage model of hippocampal neurons in mice induced by glutamate. MethodsTo clarify the role of KLF4 and glutamate in the oxidative toxicity of epilepsy, the mouse hippocampal neuron cell line (HT22) was adopted, and a neuronal death excitotoxicity cell model was formed by induction with glutamate as the in vitro epilepsy experimental model. The expression level of KLF4 was detected by Real-Time PCR. HT22 cells were transfected with KLF4-specific siRNA, and the experiments were grouped as follows: Ctrl group, Glu group, Glu + siKLF4-1 group, and Glu + siKLF4-2 group. The cell viability of each group was detected by the CCK8 method. ResultsKLF4 was significantly increased in the epilepsy model of HT22 cells induced by glutamate, while downregulation of KLF4 improved the proliferation and viability of neurons in the epilepsy model of HT22 cells induced by glutamate. ConclusionIn the hippocampal neuron cells of epileptic mice, KLF4 is highly expressed. The downregulation of KLF4 improves the proliferation function and vitality of glutamate-induced HT22 cells, indicating that KLF4 may contribute to the occurrence and development of epilepsy by participating in the regulation of oxidative stress responses.
Objective To observe the regulation effect of transforming growth factor alpha (TGFalpha;) on expression of glutamate transporter(GLAST)and ingestion activity of retinal Muuml;ller cells in mice. Methods To take the retinal tissue of Kunming mouse at postnatal 7~10 day, and then cultured Muuml;ller cells according to literature. The 3~4 generation cultured cells of the same primary cell were divided into two groups at random: ① TGFalpha; group: maintained in different concentrations of TGFalpha; as 50, 75, 125 and 150 ng/ml, 3 holes in each concentration;② Control group: cultured by Eagle culture medium which improved from Dulbeccon and contained 20% fetal calf serum. The influence of different concentrations TGFalpha; on GLAST activity in Muuml;ller cells were observed by L-3H-glutamate uptake detection; the expression of GLAST mRNA in Muuml;ller cells was determined by RT-PCR; the expression of GLAST protein was detected with immunocytochemical staining. Results With the increase of TGFalpha; concentration, both L3H glutamate uptake and GLAST mRNA expression were increased. The L-3H-glutamate accumulation had got to the maximum uptake at concentration of 125 ng/ml, which was 266% of that in control group, meanwhile, the expressions of GLAST mRNA also got to the maximum as 4 times of control group. Immunocytochemical staining indicated that the effect of 125ng/ml TGFalpha; on expression of GLAST protein was higher than that in the control group, the differences between two groups were statistically significant (Plt;0.05). Conclusion TGF-alpha; can increase GLAST activity through up-regulating the expression of GLAST mRNA and protein.