Objective To evaluate the effect of weight-bearing time on micro-fracture therapy for small sized osteochondral lesion of the talus (OLT) by comparing early weight-bearing and postponed weight-bearing. Methods Between March 2010 and September 2011, 43 patients with small sized OLT (lt; 2 cm2) scheduled for arthroscopic micro-fracture therapy were randomly divided into early weight-bearing group (n=22) and postponed weight-bearing group (n=21). There was no significant difference in gender, age, body mass index, disease duration, disease cause, preoperative visual analogue scale (VAS) score, and preoperative American Orthopaedic Foot and Ankle Society (AOFAS) score between 2 groups (P gt; 0.05). All patients of 2 groups received micro-fracture treatment under arthroscopy. Full weight bearing began under the protection of “8” figure shaped splint at immediately after operation in early weight-bearing group, and weight bearing began at 6 weeks after operation in postponed weight-bearing group. Results The size of cartilage injury was (1.24 ± 0.35) cm2 in early weight-bearing group and was (1.25 ± 0.42) cm2 in postponed weight-bearing group by arthroscopy measurement, showing no significant difference between 2 groups (t=0.09, P=0.93); and there was no significant difference in cartilage injury grading between 2 groups (Z= — 1.45, P=0.15). The follow-up time was 12-18 months (mean, 14.5 months) in 2 groups. VAS and AOFAS scores of each group at each time point after operation were all significantly improved when compared with preoperative scores (P lt; 0.05), but no significant difference was found between 2 groups at 3, 6, and 12 months after operation (P gt; 0.05). The time of returning to work in early weight-bearing group [(6.35 ± 1.93) months] was significantly shorter than that in postponed weight-bearing group [(8.75 ± 1.48) months] (t= — 4.10, P=0.00). Conclusion For patients with small sized OLT, early weight-bearing and postponed weight-bearing after micro-fracture therapy under arthroscopy have similar short-term results. But patients undergoing early weight-bearing can earlier return to work than patients undergoing postponed weight-bearing.
ObjectiveTo explore the effectiveness of arthroscopic microfracture combined with osteochondral autologous transplantation (OAT) in treatment of large area (4-6 cm2) cartilage injury of the femoral condyle of knee.MethodsBetween March 2016 and June 2017, 22 patients of large area cartilage injury of the femoral condyle of knee were treated with arthroscopic microfracture combined with OAT. There were 16 males and 6 females with an average age of 22-60 years (mean, 38.6 years). The cause of injury was traffic accident in 8 cases and sports injuries in 14 cases. The disease duration was 1-6 months (mean, 3.4 months). There were 15 cases of medial femoral condyle injuries and 7 cases of lateral condyle injuries. The area of cartilage defect was 4-6 cm2 (mean, 4.98 cm2). According to the International Cartilage Repair Society (ICRS) classification, 9 cases were rated as grade Ⅲ and 13 cases as grade Ⅳ. Eighteen cases were combined with meniscus injuries. Preoperative visual analogue scale (VAS) score was 6.36±1.25 and Lysholm score was 36.00±7.77.ResultsAll incisions healed by first intention. All patients were followed up 2-3 years with an average of 2.3 years. At 2 years after operation, the VAS score was 1.27±0.94 and the Lysholm score was 77.82±6.21, which were significantly improved when compared with those before operation (t=16.595, P=0.000; t=21.895, P=0.000). At 2 years after operation, MRI showed that the cartilage defect was repaired well.ConclusionArthroscopic microfracture combined with OAT can be used to treat large area cartilage injury of the femoral condyle of knee, and the good early effectiveness can be obtained.
Objective To determine the short-term effectiveness of matrix-induced autologous chondrocyte implantation (MACI) for femoral trochlea cartilage injury. Methods A retrospective analysis was performed on the clinical data of 10 patients with femoral trochlea cartilage injury treated with MACI between June 2012 and October 2014. There were 6 males and 4 females, aged from 15 to 48 years (mean, 33 years). The left knee was involved in 3 cases and the right knee in 7 cases. Nine patients had a history of trauma, and 1 case suffered from osteochondritis dissecans. Combined injuries included meniscus injury in 1 case, anterior cruciate ligament injury in 3 cases, and lateral collateral ligament tear in 2 cases. The mean lesion depth was 2.80 mm (range, 2-7 mm), with the mean defect size of 84.85 mm2 (range, 28.26-153.86 mm2). The mean duration of definite diagnosis was 14 days (range, 5 days to 3 months). By using arthroscopic biopsy, 200-300 mg healthy articular cartilage at non weight-bearing area of the knee femoral trochlea was collected as a source of seed cells, which were isolated and cultured to prepare MACI membrane. The adhesion activity, growth rate, and mechanical properties of the chondrocytes on the Bio-gide collagen scaffold were evaluated. In addition, the stretch rate, tensile strength, and suture strength of scaffold were tested. MACI membrane was implanted after 2 weeks to 6 months. The visual analogou scale (VAS), Lysholm score, and Tegner movement level score at preoperation and last follow-up were used to assess the function. Results The MACI membrane was successfully prepared, and the human chondrocytes adhered and grew well on the Bio-gide collagen scaffold. Mechanical test showed that MACI membrane had the stretch rate of 65.27%, the tensile strength of 26.81 MPa, and the suture strength of 6.49 N, indicating good mechanical properties. MACI membrane was successfully implanted. The mean operation time was 58.5 minutes (range, 43-99 minutes), and the mean hospitalization time was 7 days (range, 6-15 days). All incisions healed well. Ten cases were followed up 9 to 16 months (mean, 12 months). Four cases underwent iliac bone graft surgery. The mean healing time was 14 weeks (range, 12-16 weeks). No complications of osteochondrolysis, knee pain, nerve and vascular injury, deep vein thrombosis, and knee adhesion occurred during follow-up. The VAS score, Lysholm score, and Tegner score at last follow-up were significantly improved when compared with preoperative scores (t=12.060,P=0.000;t=–9.200,P=0.000;t=–14.000,P=0.000). Conclusion MACI for femoral trochlea cartilage injury has good short-term effectiveness, with less injury and fast function recovery.
ObjectiveTo investigate the effectiveness of micro-fracture therapy combined with intra-articular injection of platelet-rich plasma (PRP) in the treatment of small sized osteochondral lesion of the talus (OLT).MethodsBetween September 2014 and October 2017, 43 patients with small sized OLT met the inclusive criteria were admitted and randomly divided into micro-fracture group (21 cases) and combined group (22 cases). Patients in the micro-fracture group were treated with micro-fracture therapy, and patients in the combined group were treated with micro-fracture therapy combined with intra-articular injection of PRP. There was no significant difference in gender, age, disease duration, side of OLT, injured position, lesion area, Mintz classification, and preoperative American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hind foot score and visual analogue scale (VAS) score between the two groups (P>0.05). After treatment, MRI, VAS score, and AOFAS ankle-hind foot score were used to evaluate the recovery of OLT and the ankle function.ResultsAll incisions healed by first intention, and no complications such as venous thrombosis and ankle joint infection occurred. All patients were followed up 12-18 months after operation, with an average of 15.6 months. The VAS scores and the AOFAS ankle-hind foot scores were significantly improved at 6 and 12 months after operation in the two groups (P<0.05), and the scores at 12 months were significantly improved when compared with postoperative scores at 6 months (P<0.05). Compared with the micro-fracture group, the VAS score and the AOFAS ankle-hind foot score were significantly improved in the combined group at 6 and 12 months after operation (P<0.05). MRI showed that OLT was well filled in both groups at 12 months after operation.ConclusionCompared with micro- fracture therapy, micro-fracture therapy combined with intra-articular injection of PRP can effectively reduce pain, improve ankle function, and has a good effectiveness in the treatment of small sized OLT.
Objective To observe the outcome of arthroscopic meniscal plasty and suture repair to treat torn discoid lateral meniscus involving popl iteal hiatus. Methods Between January 2008 and May 2009, 21 cases of torn discoid lateral meniscus involving popl iteal hiatus were treated by arthroscopic surgery. There were 9 males and 12 females with an average ageof 22.5 years (range, 12-45 years), including 12 left knees and 9 right knees. Seven cases had the history of injury and other 14 cases had uncertain trauma. The average disease duration was 6.4 months (range, 3 months to 2 years). All patients complained knee pain or locking with positive McMurray test and mill ing test before surgery. All cases had torn discoid lateral meniscus, and the tear extended to the popl iteal hiatus, including 17 cases of complete type and 4 cases of incomplete type according to the Watanabe classification. After meniscal plasty, suture repair of torn popl iteal lateral hiatus was performed. The anterior part to hiatus was repaired by the outside-in technique, and the posterior part underwent repair of all inside technique by FasTFix. Results All wounds healed by first intention with no compl ications such as infection, stiffness of knee, or injury of common peroneal nerve. All patients were followed up 12-28 months with an average of 18 months. The symptoms of knee pain or locking disappeared postoperatively with negative McMurray test and mill ing test in all patients. The Lysholm score was improved from 54.0 ± 13.4 to 90.0 ± 6.6 at 12 months postoperatively, showing significant difference (t=— 12.00, P=0.00). Based on the improved Lysholm classification standard, the results were excellent in 14 cases, good in 5, and fair in 2; the excellent and good rate was 90.5%. Conclusion For torn discoid lateral meniscus involving popl iteal hiatus, based on meniscal plasty, suture repair of the popl iteal hiatus would contribute to preserve the peripheral part and restore its stabil ity.
ObjectiveTo investigate the effectiveness of arthroscopic bipolar radiofrequency energy (bRFE) and lateral partial meniscectomy for lateral meniscus tear and cartilage lesion. MethodsBetween January 2011 and December 2012, 40 eligible patients with lateral meniscus tear and cartilage injury in the lateral knee compartment underwent arthroscopic treatment, and the clinical data were analysed retrospectively. There were 21 males and 19 females, aged 15-65 years (mean, 42.1 years). The left knee was involved in 22 cases and the right knee in 18 cases. The causes of injury included sport injuries in 5 cases and sprain of knee joints in 8 cases, the remaining patients had no history of trauma. The disease duration ranged from 1 month to 10 years (median, 10 months). The Lysholm score and Japanese Orthopaedic Association (JOA) score of the knee were 59.9±8.2 and 69.6±5.3. According to the Outerbridge classification, 2 cases were rated as grade I, 21 cases as grade II, 17 cases as grade III, and 10 cases as grade IV. The scores described by Noyes were 1-16 (mean, 6.52). The Noyes scores were from 1 to 6 points in 20 patients (group A) and 7 to 16 points in 20 patients (group B). During surgery, all patients underwent partial meniscectomy, and radiofrequency-based chondroplasty was used. Knee joint function was assessed using the Lysholm score and JOA score of the knee, and the clinical outcomes between different degrees of cartilage lesions were also compared. ResultsAll incisions healed primarily without complication. All the patients were followed up 8-31 months (mean, 18.1 months). The Lysholm and JOA scores of the knee at last follow-up (92.2±7.2 and 92.9±7.9, respectively) were significantly higher than those at preoperation (P<0.05). There was no significant difference in preoperative Lysholm and JOA scores of the knee between groups A and B (P>0.05), but significance difference was found between 2 groups at last follow-up (P<0.05). ConclusionArthroscopic bRFE and lateral partial meniscectomy have good effectiveness in treating lateral meniscus tear and cartilage lesion. The effectiveness is better in patients with mild cartilage lesion than in patients with severe cartilage lesion.
Objective To investigate the role and mechanism of S100 calcium binding protein B (S100B) in osteoarthritis (OA) cartilage damage repair. Methods Twenty New Zealand rabbits were randomly divided into control group and model group, with 10 rabbits in each group. Rabbits in the model group were injured by the right knee joint immobilization method to make the artilage injury model, while the control group did not deal with any injury. After 4 weeks, the levels of interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) in synovial fluid were detected by ELISA method; the mRNA and protein expressions of S100B, fibroblast growth factor 2 (FGF-2), and FGF receptor 1 (FGFR1) in cartilage tissue were examined by real-time fluorescence quantitative PCR (qRT-PCR) and Western blot assay. Human synovial fibroblasts (SF) were isolated and cultured in vitro. The effects of S100B overexpression and knockdown on the levels of IL-1β and TNF-α (ELISA method) and the expressions of FGF-2 and FGFR1 gene (qRT-PCR) and protein (Western blot) were observed. Moreover, the effects of FGFR1 knockdown in above S100 overexpression system on the levels of IL-1β and TNF-α (ELISA method) and the expressions of FGF-2 and FGFR1 gene (qRT-PCR) and protein (Western blot) were observed. Results ELISA detection showed that the expressions of IL-1β and TNF-α in the synovial fluid of the model group were significantly higher than those of the control group (P<0.05); qRT-PCR and Western blot detection showed that the mRNA and protein expressions of S100B, FGF-2, and FGFR1 in cartilage tissue were significantly higher than those of the control group (P<0.05). Overexpression and knockdown S100 could respectively significantly increase and decrease lipopolysaccharides (LPS) induced IL-1β and TNF-α levels elevation and the mRNA and protein expressions of FGF-2 and FGFR1 (P<0.05); whereas FGFR1 knockdown could significantly decrease LPS induced IL-1β and TNF-α levels elevation and the mRNA and protein expressions of FGF-2 and FGFR1 (P<0.05). Conclusion S100B protein can regulate the inflammatory response of SF and may affect the repair of cartilage damage in OA, and the mechanism may be related to the activation of FGF-2/FGFR1 signaling pathway.
Objective To summarize the effect of cartilage progenitor cells (CPCs) and microRNA-140 (miR-140) on the repair of osteoarthritic cartilage injury, and analyze their clinical prospects. Methods The recent researches regarding the CPCs, miR-140, and repair of cartilage in osteoarthritis (OA) disease were extensively reviewed and summarized. Results CPCs possess the characteristics of self-proliferation, expression of stem cell markers, and multi-lineage differentiation potential, and their chondrogenic ability is superior to other tissues-derived mesenchymal stem cells. CPCs are closely related to the development of OA, but the autonomic activation and chondrogenic ability of CPCs around the osteoarthritic cartilage lesion cannot meet the requirements of complete cartilage repair. miR-140 specifically express in cartilage, and has the potential to activate CPCs by inhibiting key molecules of Notch signaling pathway and enhance its chondrogenic ability, thus promoting the repair of osteoarthritic cartilage injury. Intra-articular delivery of drugs is one of the main methods of OA treatment, although intra-articular injection of miR-140 has a significant inhibitory effect on cartilage degeneration in rats, it also exhibit some limitations such as non-targeted aggregation, low bioavailability, and rapid clearance. So it is a good application prospect to construct a carrier with good safety, cartilage targeting, and high-efficiency for miR-140 based on articular cartilage characteristics. In addition, CPCs are mainly dispersed in the cartilage surface, while OA cartilage injury also begins from this layer, it is therefore essential to emphasize early intervention of OA. Conclusion miR-140 has the potential to activate CPCs and promote the repair of cartilage injury in early OA, and it is of great clinical significance to further explore the role of miR-140 in OA etiology and to develop new OA treatment strategies based on miR-140.
ObjectiveTo observe the effect of using tungsten drills to prepare mouse knee osteochondral injury model by comparing with the needle modeling method, in order to provide an appropriate animal modeling method for osteochondral injury research.MethodsA total of 75 two-month-old male C57BL/6 mice were randomly divided into 3 groups (n=25). Mice in groups A and B were used to prepare the right knee osteochondral injury models by using needles and tungsten drills, respectively; group C was sham-operation group. The general condition of the mice was observed after operation. The samples were taken at 1 day and 1, 2, 4, and 8 weeks after modeling, and HE staining was performed. The depth, width, and cross-sectional area of the injury site at 1 day in groups A and B were measured, and the percentage of the injury depth to the thickness of the articular cartilage (depth/thickness) was calculated. Toluidine blue staining and immunohistochemical staining for collagen type Ⅱ were performed at 8 weeks, and the International Cartilage Research Society (ICRS) score was used to evaluate the osteochondral healing in groups A and B.ResultsAll mice survived to the completion of the experiment. HE staining showed that group C had normal cartilage morphology. At 1 day after modeling, the injury in group A only broke through the cartilage layer and reached the subchondral bone without entering the bone marrow cavity; the injury in group B reached the bone marrow cavity. The depth, width, cross-sectional area, and depth/thickness of the injury in group A were significantly lower than those in group B (P<0.05). At 1, 2, 4, and 8 weeks after modeling, there was no obvious tissue filling in the injured part of group A, and no toluidine blue staining and expression of collagen type Ⅱ were observed at 8 weeks; while the injured part of group B was gradually filled with tissue, the toluidine blue staining and the expression of collagen type Ⅱ were seen at 8 weeks. At 8 weeks, the ICRS score of group A was 8.2±1.3, which was lower than that of group B (13.6±0.9), showing significant difference (t=−7.637, P=0.000).ConclusionThe tungsten drills can break through the subchondral bone layer and enter the bone marrow cavity, and the injury can heal spontaneously. Compared with the needle modeling method, it is a better method for modeling knee osteochondral injury in mice.