Objective To investigate the effects of celecoxib-poly lactide-co-glycolide microparticles (CEL-PLGA-MS) on rat retina after intravitreal injection. Methods A total of 32 male Brown Norway rats were randomly divided into CEL-PLGA-MS group and celecoxib group, 16 rats in each group. The rats in CEL-PLGA-MS group were divided into four dosage group, four rats in each group, which received intravitreal injection of PLGA with celecoxib at the concentration of 40, 80, 160, 320 mu;mol/L, respectively. The rats in celecoxib group were divided into four dosage group, four rats in each group, which received intravitreal injection of celecoxib at the concentration of 40, 80, 160, 320 mu;mol/L, respectively. Phosphate buffer solution (PBS) was injected in two rats as PBS control group. Two rats as normal control group received no treatment. The difference of retinal thickness among groups was measured by optical coherence tomography (OCT). The morphological and histological change of retina was evaluated under light microscope and transmission electron microscope. Results There was no difference of retinal thickness between normal control group and PBS control group (F=0.12,P>0.05). At the first week after injection, the retinal thickness of CEL-PLGA-MS group and celecoxib group were thicker than that in normal control group and PBS control group (F=9.62, 46.13;P<0.01). The retinal thickness of celecoxib group was thicker than that in CEL-PLGA-MS group (F=165.15,P<0.01). The retinal thickness was estimated equal among 40, 80, 320 mu;mol/L dosage groups in CEL-PLGA-MS group (F=4.79,P<0.01). The retinal thickness of 160, 320 mu;mol/L dosage group were thicker than that in 40, 80 mu;mol/L dosage group in celecoxib group (F=28.10,P<0.01). At the second week after injection, there was no difference of retinal thickness between CEL-PLGA-MS and celecoxib group (F=3.79,P>0.05); the retinal thickness of CEL-PLGA-MS and celecoxib group became thinner gradually compare to the first week after injection (F=7.28, 103.99; P<0.01). At the fourth week after injection, the retinal thickness of celecoxib group was thicker than that in CEL-PLGA-MS group (F=19.11,P<0.01). The retinal thickness of CEL-PLGA-MS group was approximately the same to normal control group and PBS control group (F=2.02,P>0.05). The retinal thickness of celecoxib group was thicker than that in normal control group and PBS control group. No considerable abnormality of the retina was seen by light microscope and the retinal thickness corresponded with the values measured by OCT at the first week after injection. The abnormal structures of the retina were seen in 160, 320 mu;mol/L dosage group of celecoxib group and inner changed evidently by the transmission electron microscope. Disordered arrangement of microfilaments, dilated microtubule and some mitochondria vacuolation were observed in 320mu;mol/L dosage group of celecoxib group. Others changed slightly. Conclusions CEL-PLGA-MS has less toxicity on the retina than free-celecoxib after intravitreal injection. The safety of intravitreal injection with CEL-PLGA-MS is better than celecoxib.
This research was aimed to find the skin irritation and burns treatment effect of wound dressing with microspheres containing levofloxacin. We used reference GB/T16886.10-2005 to evaluate the dressing skin irritation. We prepared rabbit models divided into three groups. The control group was rapped with Vaseline gauze bandage, while the positive control group was rapped with the wounds of nano-silver paste bandage. The experimental sample group was rapped with wound dressing with microspheres containing levofloxacin. We measured the wound without healing area and the hydroxyproline content at the ends of 3 d, 6 d, 9 d, 14 d, 21 d, 28 d. and meanwhile performed histopathological examination. The experimental results showed that the dressing primary irritation index was 0. The nonhealing wound area of theexperimental sample group and positive control group at the ends of 6 d, 9 d, 14 d, 21 d were less than that of the control group (P<0.05). The nonhealing wound area of the experimental sample group at the ends of 9 d and 14 d was significantly lower than that of the positive control group (P<0.05). The hydroxyproline content of the experimental sample group at the ends of 6 d, 9 d and 14 d was significantly higher than that of the positive control group and blank control group (P<0.05). The pathology observed of the experimental sample group at 21 d were the earliest appendages. The wound dressing with microspheres containing levofloxacin has minimal skin irritation, effectively promote wound healing of burn.
The human sclera accounts for 95% of the surface of the eyeball, providing ample contact area which is suitable for targeted trans-scleral ocular drug delivery. Currently there are several tans-scleral sustained-release strategies, including intra-scleral delivery, episcleral delivery, as well as tans-scleral iontophoresis. Different devices and methods have their own advantages and disadvantages, for example, intra-scleral delivery is somehow invasive, and episcleral delivery device needs to be made thin to prevent erosion of conjunctiva, iontophoresis needs to be frequently repeated as of its short-term effect. With the development of bio-material engineering technology, episcleral microfilm could become an ideal drug delivery route for posterior segment ocular diseases.
ObjectiveTo observe the clinical efficacy of dexamethasone intravitreal implant (DEX) in the treatment of active non-infectious uveitis macular edema (NIU-ME).MethodsA retrospective observational study. From February 2018 to February 2019, 23 patients (26 eyes) were included in the study who were diagnosed with NIU-ME at the Department of Ophthalmology, Central Theater Command General Hospital and received intravitreal DEX treatment. Among 23 patients, there were 8 males (8 eyes) and 15 females (18 eyes); the average age was 46.9 years; the average course of disease was 9.2±2.4 months. All the affected eyes underwent BCVA and intraocular pressure examination; at the same time, OCT was used to measure the central retinal thickness (CMT) of the macula. Snellen visual acuity chart was used for visual inspection. The average BCVA of the affected eye was 0.281±0.191, the average intraocular pressure was 16.2±0.8 mmHg (1 mmHg=0.133 kPa), and the average CMT was 395.4±63.7 μm. Among the 23 patients, 8 patients had middle uveitis and 15 patients had posterior uveitis. Seven patients had received intravenous infusion of methylprednisolone, 5 patients had been treated with methylprednisolone combined with immunosuppressive agents, and 11 patients had not received any treatment. All the affected eyes were treated with DEX intravitreal injection. Patients received repeated visual acuity, intraocular pressure and OCT examination with follow-up after injection. During the follow-up period, patients with recurrence of edema or poor efficacy, systemic methylprednisolone and intravitreal reinjection of DEX, triamcinolone acetonide or methotrexate should be considered based on the patient's own conditions. We observed the changes of BCVA, intraocular pressure and CMT before and after injection in the affected eyes, and analyzed the variance of a single repeated measurement factor. At the same time, we observed the occurrence of ocular adverse reactions and systemic complications.ResultsAfter treatment 1.2±0.4, 3.3±0.3, 6.7±1.1, 9.2±1.1, 12.2±0.6 months, the BCVA of the affected eyes were 0.488±0.296, 0.484±0.266, 0.414± 0.247, 0.411±0.244 and 0.383±0.232; CMT was 280.2±42.7, 271.0±41.4, 292.5±42.9, 276.2±40.5, 268.4±26.6 μm, respectively. Compared with before treatment, the BCVA and CMT of the all eyes increased after treatment, and the difference was statistically significant (F=30.99, 5 196.92; P<0.000). Among 23 eyes completed a 12-month follow-up, 13 eyes (56.5%) received 2 injections, 3 eyes (13.0%) received 3 injections, and other 7 eyes (30.4%) received only 1 injection. After treatment 1.2±0.4 months, 5 patients (6 eyes) with intraocular pressure>25 mmHg gradually returned to normal after treatment with two eye drops for lowering intraocular pressure; 1 patient (2 eyes) with intraocular pressure>40 mmHg, the intraocular pressure gradually returned to normal after 3 kinds of eye drops for lowering intraocular pressure.ConclusionIntravitreal injection of DEX in the treatment of NIU-ME can improve the visual acuity of the affected eye and reduce CMT.