west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "透明质酸" 57 results
  • STIMULATION OF INSULIN-LIKE GROWTH FACTOR-I TO CHONDROGENESIS OF ENGINEERING CARTILAGE TISSUE

    Objective To explore the ability of insulin-like growth factor-Ⅰ (IGF-Ⅰ) and hyaluracan acid in prompting chondrogenesis of engineering cartilage tissue.Methods Human articular chondrocytes were isolatedand cultured in DMEM plus 10% fetal bovine serum. They were divided into three groups:hyaluracan acid+chondrocytes + IGF-Ⅰ group(IGF-Ⅰ group), hyaluracan acid+chondrocytes group(cell group), hyaluracan acid group(control group). The ability of chondrogenesis was investigated by HE and toluidine blue staining, human collagen Ⅱ immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR).Results Both cell group and IGF-Ⅰ group could develop into cartilage tissue in the sixth week while control group could not. The number of cartilage lacuna in IGF-Ⅰ group were more than that in cell group. Human collagen Ⅱ immunohistochemistry showed that there were ber positive cell in IGF-Ⅰ group than in cell group, collagen Ⅱ mRNA expression was more higher and collagen Ⅰ mRNA expression was lower in IGF-Ⅰ group than in cell group. Conclusion Insulin growth factorⅠ can prompt chondrogenesis of engineering cartilage tissue and ameliorate the quality of engineering cartilage tissue in vitro.

    Release date: Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON TISSUE ENGINEERED CARTILAGE COMPLEX THREE-DIMENSIONAL NANO-SCAFFOLD WITH COLLAGEN TYPE II AND HYALURONIC ACID IN VITRO

    Objective To explore the possibility of constructing tissue engineered cartilage complex three-dimensional nano-scaffold with collagen type II and hyaluronic acid (HA) by electrospinning. Methods The three-dimensional porous nano-scaffolds were prepared by electrospinning techniques with collagen type II and HA (8 ∶ 1, W ∶ W), which was dissolved in mixed solvent of 3-trifluoroethanol and water (1 ∶ 1, V ∶ V). The morphology were observed by light microscope and scanning electron microscope (SEM). And the porosity, water absorption rate, contact angle, and degradation rate were detected. Chondrocytes were harvested from 1-week-old Japanese white rabbit, which was disgested by 0.25% trypsin 30 minutes and 1% collagenase overlight. The passage 2 chondrocytes were seeded on the nano-scaffold. The cell adhesion and proliferation were evaluated by cell counting kit 8 (CCK-8). The cell-scaffold composites were cultured for 2 weeks in vitro, and the biological morphology and extracelluar matrix (ECM) secretion were observed by histological analysis. Results The optimal electrospinning condition of nano-scaffold was 10% electrospinning solution concentration, 10 cm receiver distance, 5 mL/ h spinning injection speed. The scaffold had uniform diameter and good porosity through the light microscope and SEM. The diameter was 300-600 nm, and the porosity was 89.5% ± 25.0%. The contact angle was (35.6 ± 3.4)°, and the water absorption was 1 120% ± 34% at 24 hours, which indicated excellent hydrophilicity. The degradation rate was 42.24% ± 1.51% at 48 days. CCK-8 results showed that the adhesive rate of cells with scaffold was 169.14% ± 11.26% at 12 hours, and the cell survival rate was 126.03% ± 4.54% at 7 days. The histological and immunohistochemical staining results showed that the chondrocytes could grow well on the scaffold and secreted ECM. And the similar cartilage lacuma structure could be found at 2 weeks after co-culture, which suggested that hyaline cartilage formed. Conclusion The collage type II and HA complex three-dimensional nano-scaffold has good physicochemical properties and excellent biocompatibility, so it can be used as a tissue engineered cartilage scaffold.

    Release date:2016-08-31 04:05 Export PDF Favorites Scan
  • AN EXPERIMENTAL STUDY ON PREVENTION OF PERIDURAL ADHESION AFTER LAMINECTOMY

    Objective To explore effective substances and methods for prevention of peridural adhesion. Methods Laminectomy was performed on the 5th lumbar segment in 64 rabbits, which were equally divided into 4 groups. The duramater (12 mm×6 mm) was exposed. The exposed duramater was left uncovered in Group A; the exposed dura mater was covered with sodium hyaluronate jel (high molecular weight, 1 ml) in Group B; the lamina repair was performed with the autologous spinous process in Group C; the lamina repair was performed with the sodium hyaluronate jel filling and the autologous spinousprocess in Group D. The specimens were observed grossly and histologically at 2, 4, 6 and 8 weeks postoperatively. The computed imaging analysis on the epidural adhesion was also performed at 6 weeks postoperatively. Results ①The gross anatomical evaluation: Severe peridural adhesion was formed in Group A, less adhesion formed in Groups B and C, but no obvious adhesion formed in Group D. ②The area percentage of the epidural scar: The area percentage ofthe epidural scar was 15.89%±1.88% and 13.94%±1.89% in Groups C and D respectively, which were significantly lower than those in Groups A and B (22.66%±2.89% and 20.70%±2.82%,Plt;0.05). ③The density of epidural scar: Thedensity of the epidural scars were 42.03%±7.36% and 36.50%±9.08% in Groups B and D, which were significantly lower than those in Groups A and C (63.73%±6.06% and 52.11%±4.10%,Plt;0.05). Conclusion The high molecular weight sodium hyaluronate jel filling combined with the lamina repair using the autologous spinous process has the best preventive effect on the peridural adhesion after laminectomy.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • FABRICATION OF COLLAGEN/SODIUM HYALURONATE SCAFFOLD AND ITS BIOLOGICAL CHARACTERISTICS FOR CARTILAGE TISSUE ENGINEERING

    Objective To develop a scaffold material containing collagen Ⅰ and sodium hyaluronate for the cartilage tissue engineering and to evaluate its biocompatibility by using the rabbit chondrocytes derived from amandibular condylar process. Methods The porous matrices containing collagen Ⅰ and sodium hyaluronate were fabricated by the freezedrying technique and were crosslinked by using 1-ethyl-3(3-dimethyl aminopropyl) carbodiimide (EDC). The microstructure of the scaffold was observed under thescanning electron microscope (SEM), and the enzymatic degradation test was performed to compare the ability of the scaffold resistance to collagenase before and after the crosslinking. The chondrocytes from the rabbits’ condylar process were isolated and cultured before they were seeded into the scaffold, and cell attachment and proliferation were measured by the cell count 1, 3, 5, 7 and 10 daysafter the cell being seeded; then, the biocompatibility of the scaffold was evaluated by the light microscopic examination, histological examination, and the SEM exmination. Results The porous structure of the scaffold facilitated the penetration and attachment of the seeded cells. The porosity was 83.7% and the pore size was 100-120 μm. The cell number increased from 3.7×104 per scaffold 1 day after the cell being seeded to 8.2×104 per scaffold 10 days after the cell being seeded. The crosslinking treatment could significantly enhance the scaffold resistance to the collagenase activity. The examinations under the light microscope and SEM indicated that the chondrocyte adhered and spread well on the scaffold, and the extracellular matrices were also observed around the chondrocytes. Conclusion The porous scaffold composed of collagen Ⅰ and hyaluronan has anappropriate structure and a good biocompatibility for the attachment and proliferation of the chondrocytes, which can facilitate it to become a useful scaffold in the cartilage tissue engineering.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • Suprachoroidal injection of sodium hyaluronate in the treatment of 12 patients with rhegmatogenous retinal detachment

    ObjectiveTo observe the retinal reattachment of suprachoroidal injection with sodium hyaluronate in the treatment of rhegmatogenous retinal detachment (RRD).MethodsTwelve eyes of 12 patients with RRD diagnosed by the examinations of B-mode ultrasound, binocular indirect ophthalmoscope, OCT and scanning laser ophthalmoscope in West China Hospital of Sichuan University from October 2018 to February 2019 were included in this study. There were 7 males and 5 females, aged from 15 to 66 years, with the mean age of 32.40±14.81 years. There were 4 eyes with BCVA<0.1, 4 eyes with BCVA 0.1-0.4, 4 eyes with BCVA>0.4. The extent of retinal detachment involves 1 to 4 quadrants. All eyes were injected with sodium hyaluronate via suprachoroidal space under non-contact wide-angle system. Surgery was performed by the same ophthalmologist with extensive surgical experience. During the operation, the retinal hole was handled with scleral freezing and laser photocoagulation. The follow-up was 2 months. The retinal reattachment was observed.ResultsOf the 12 eyes, 6 eyes (50.00%) were anatomically reattached, 4 eyes (33.33%) ere partly anatomically reattached with subretinal fluid, 2 eyes (16.67%) were not reattached. The holes in 4 eyes of partly anatomically reattached with subretinal fluid were located on the choroidal pad and the holes were closed, in addition, the subretinal fluid gradually absorbed over time. Two eyes failed in retinal reattachment received vitrectomy with silicone oil tamponade or sclera buckling surgery. No severe complications such as endophthalmitis and choroidal hemorrhage were found at follow-up visits.ConclusionSuprachoroidal injection of sodium hyaluronate is an effective and safe treatment for RRD, which can promote retinal reattachment.

    Release date:2019-05-17 04:15 Export PDF Favorites Scan
  • The experimental study of the effect of medicineinduced posterior vitreous detachment on proliferative vitreoretinopathy

    Objective To observe the effect of medicineinduced posterior vitreous detachment (PVD) on proliferative vitreoretinopathy (PVR). Methods PVR was induced in the left eyes of 24 pigmented rabbits by intravitreal injection with platelet rich plasma. The rabbits were randomly divided into two experimental groups (group A and B) and one control group with 8 eyes in each group. Three hours later, the eyes in group A and B and the control group underwent intravireal injection with 1 U plasmin 0.05 ml+20 U hyaluronidase 0.05 ml, plasmin 0.1 ml, and balance salt solution 0.1 ml, respectively. The grade of PVR was recorded 1, 7, and 28 days after the intravitreal injection, and the eyes were examined by flash electroretinogram (FERG), B-scan, and retinal histopathological examination. Results The PVR models of rabbit eyes were induced successfully. On the 7th day after injection, complete and partial PVD was found in 5 and 3 eyes respectively in group A; partial PVD in 5 eyes and no complete PVD was observed in group B; there was no PVD in the other 3 eyes in group B and also in the eyes in the control group. On the 28th day after intravitreal injection, PVR grade of group A and B were both obviously lower than that of the control group(D=75.6, 98.9;P=0.003,P=0.011); On the 7th and 28th day after injection, the b-wave amplitude in group A and B was significantly higher than that in the control group; PVR grade of the PVD eyes was lower than that of nonPVD eyes; PVR grade of the complete PVD eyes was only 0~1. Conclusions Three hours after the PVR models of rabbit eyes were induced, complete PVD induced by intravitreal injection of plasmin combined with hyaluronidase could prevent the development of PVR of rabbit eyes in some degree; partial PVD induced by plasmin alone or combined with hyaluronidase could relieve the development of PVR.

    Release date:2016-09-02 05:42 Export PDF Favorites Scan
  • EFFECTS OF DECIMETER WAVE AND SODIUM HYALURONATE PRODUCT ON POSTOPERATIVE ADHESIONS IN FLEXOR TENDON

    Objective To compare the effect of decimeter wave with sodium hyaluronate product (SHP) on preventing and treating peritendinous adhesion and promoting tendon heal ing. Methods Totally 96 healthy male white 6-month-old Leghorn chickens weighing (2.24 ± 0.07) kg were randomized into group A ( decimeter wave therapy group, n=32),in which decimeter wave therapy was appl ied 1 to 21 days after operation at a frequency of 915 MHz, a power of 8 W, radiation distance of 10 cm, for 10 minutes once per day; group B (SHP group, n=32), in which 5 mL and 1.2% SHP was appl ied; and group C (control group, n=32), in which injury received no treatment. The III and IV toes of left feet of all chickens were made into tendon injury model. The general condition of animal was observed after operation; gross and histological observations were made 7, 10, 14, 18, 21 and 28 days after operation, and the biomechanical analysis was done 14 and 28 days after operation. Results Operative incision healed well, no infection and death occurred. Peritendinous adhesions in groups A, B were looser, and tendon heal ing was better than that of group C 14 and 28 days after operation. More fibroblasts with active metabol ism and more collagen formation in groups A, B than that in group C. The Pmax of group A was better than that of group B 14 and 28 days after operation (P lt; 0.05); the δmax of group A was better than that of group B 18 and 21 days after operation (P lt; 0.05), and the W0 of group A was better than that of group B 18, 21 and 28 days after operation (P lt; 0.05). There was no significant difference between group A and group B at the other time points. Conclusion Topical decimeter wave therapy and appl ication of SHP after flexor tendon repair can promote intrinsic heal ing, meanwhile they can prevent the adhesion of tendon and reduce extrinsic heal ing. Decimeter wave therapy can improve the qual ities of tendon’s wound heal ing.

    Release date:2016-09-01 09:19 Export PDF Favorites Scan
  • 纤溶酶和透明质酸酶在诱导猪玻璃体后脱离中对眼前部组织的安全性研究

    Release date:2016-09-02 05:48 Export PDF Favorites Scan
  • EXPERIMENTAL RESEARCH OF DIFFERENTIATION OF HUM AN AMNIOTIC MESENCHYM AL STEM CELLS INTO LIGAMENT CELLS IN VITRO

    ObjectiveTo discuss whether human amniotic mesenchymal stem cells (hAMSCs) possesses the characteristic of mesenchymal stem cells, and could differentiate into ligament cells in vitro after induction. MethodsThe hAMSCs were separated through enzyme digestion, and the phenotypic characteristics of hAMSCs were tested through flow cytometry. The cells at passage 3 were cultured with L-DMEM/F12 medium containing transforming growth factor β1 (TGF-β1)+basic fibroblast growth factor (bFGF) (group A), containing hyaluronic acid (HA) (group B), containing TGF-β1+bFGF+HA (group C), and simple L-DMEM/F12 medium (group D) as control group. The morphology changes of cells in each group were observed by inverted phase contrast microscope at 21 days after induction; the cellular activities and proliferation were examined by sulforhodamine (SRB) colorimetric method; and specific mRNA and protein expressions of ligament including collagen type I, collagen type III, and tenascin C (TNC) were measured by real-time fluorescence quantitative PCR and immunohistochemical staining. ResultsThe flow cytometry result indicated that hAMSCs expressed mesenchymal stem cell phenotype. After 21 days of induction, the cells in groups A, B, and C grew like spindle-shaped fibroblasts under inverted phase contrast microscope, and cells showed single shape, obvious directivity, and compact arrangement in group C. The SRB result indicated that the cells in each group reached the peak of growth curve at 6 days; the cellular activities of groups A, B, and C were significantly higher than that of group D at 6 days after induction. Also, the immunohistochemical staining results showed that no expressions of TNC were detected in 4 groups at 7 days; expressions of collagen type I in groups A, B, and C were significantly higher than that in group D at 7, 14, and 21 days (P<0.001); the expressions of collagen type III in groups A, B, and C were significantly higher than that in group D at 14 and 21 days (P<0.001). There was an increasing tendency with time in collagen type I of group B, in collagen type III and TNC of groups A and C, showing significant difference among different time points (P<0.001). The real-time fluorescence quantitative PCR results revealed that the mRNA expressions of collagen type I and TNC in group C were significantly higher than those in groups A and B (P<0.05), and the mRNA expression of collagen type III in group B were significantly higher than that in groups A and C at 21 days (P<0.05). The mRNA expressions of collagen type I and TNC in groups A and C and mRNA expression of collagen type III in group C had an increasing tendency with time, showing significant difference among different time points (P<0.001). ConclusionThe hAMSCs possesses the characteristics of mesenchymal stem cells and excellent proliferation capacity. After in vitro induction, the expressions of ligament specific genes can be up-regulated and the synthesis of ligament specific proteins can be also strengthened. As a result, it can be used as one of ligament tissue engineering seed cell sources.

    Release date: Export PDF Favorites Scan
  • Preparation and properties of a new artificial bone composite material

    ObjectiveTo study the preparation and properties of the hyaluronic acid (HA)/α-calcium sulfate hemihydrate (α-CSH)/β-tricalcium phosphate (β-TCP) material (hereinafter referred to as composite material). Methods Firstly, the α-CSH was prepared from calcium sulfate dihydrate by hydrothermal method, and the β-TCP was prepared by wet reaction of soluble calcium salt and phosphate. Secondly, the α-CSH and β-TCP were mixed in different proportions (10∶0, 9∶1, 8∶2, 7∶3, 5∶5, and 3∶7), and then mixed with HA solutions with concentrations of 0.1%, 0.25%, 0.5%, 1.0%, and 2.0%, respectively, at a liquid-solid ratio of 0.30 and 0.35 respectively to prepare HA/α-CSH/ β-TCP composite material. The α-CSH/β-TCP composite material prepared with α-CSH, β-TCP, and deionized water was used as the control. The composite material was analyzed by scanning electron microscope, X-ray diffraction analysis, initial/final setting time, degradation, compressive strength, dispersion, injectability, and cytotoxicity. ResultsThe HA/α-CSH/β-TCP composite material was prepared successfully. The composite material has rough surface, densely packed irregular block particles and strip particles, and microporous structures, with the pore size mainly between 5 and 15 μm. When the content of β-TCP increased, the initial/final setting time of composite material increased, the degradation rate decreased, and the compressive strength showed a trend of first increasing and then weakening; there were significant differences between the composite materials with different α-CSH/β-TCP proportion (P<0.05). Adding HA improved the injectable property of the composite material, and it showed an increasing trend with the increase of concentration (P<0.05), but it has no obvious effect on the setting time of composite material (P>0.05). The cytotoxicity level of HA/α-CSH/β-TCP composite material ranged from 0 to 1, without cytotoxicity. Conclusion The HA/α-CSH/β-TCP composite materials have good biocompatibility. Theoretically, it can meet the clinical needs of bone defect repairing, and may be a new artificial bone material with potential clinical application prospect.

    Release date:2023-04-11 09:43 Export PDF Favorites Scan
6 pages Previous 1 2 3 ... 6 Next

Format

Content