ObjectiveTo systematically evaluate the clinical value of machine learning (ML) for predicting the neurological outcome of out-of-hospital cardiac arrest (OHCA), and to develop a prediction model. MethodsWe searched the PubMed, Web of Science, EMbase, CNKI, Wanfang database from January 1, 2011 to November 24, 2021. Studies on ML for predicting neurological outcomes in OHCA pateints were collected. Two researchers independently screened the literature, extracted the data and evaluated the bias of the included literature, evaluated the accuracy of different models and compared the area under the receiver operating characteristic curve (AUC). ResultsA total of 20 studies were included. Eleven of the studies were from open source databases and nine were from retrospective studies. Sixteen studies directly predicted OHCA neurological outcomes, and four predicted OHCA neurological outcomes after target temperature management. A total of seven ML algorithms were used, among which neural network was the ML algorithm with the highest frequency (n=5), followed by support vector machine and random forest (n=4). Three papers used multiple algorithms. The most frequently used input characteristic was age (n=19), followed by heart rate (n=17) and gender (n=13). A total of 4 studies compared the predictive value of ML with other classical statistical models, and the AUC value of ML model was higher than that of classical statistical models. ConclusionExisting evidence suggests that ML can more accurately predict OHCA nervous system outcomes, and the predictive performance of ML is superior to traditional statistical models in certain situations.
Wearable monitoring, which has the advantages of continuous monitoring for a long time with low physiological and psychological load, represents a future development direction of monitoring technology. Based on wearable physiological monitoring technology, combined with Internet of Things (IoT) and artificial intelligence technology, this paper has developed an intelligent monitoring system, including wearable hardware, ward Internet of Things platform, continuous physiological data analysis algorithm and software. We explored the clinical value of continuous physiological data using this system through a lot of clinical practices. And four value points were given, namely, real-time monitoring, disease assessment, prediction and early warning, and rehabilitation training. Depending on the real clinical environment, we explored the mode of applying wearable technology in general ward monitoring, cardiopulmonary rehabilitation, and integrated monitoring inside and outside the hospital. The research results show that this monitoring system can be effectively used for monitoring of patients in hospital, evaluation and training of patients’ cardiopulmonary function, and management of patients outside hospital.