west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "A549 cells" 6 results
  • A549 Cells Promote HUVEC Migration and Angiogenesis under Hypoxic Conditions

    ObjectiveTo observe the effects of A549 cells under hypoxicconditions on the migration of human umbilical vein endothelial cells (HUVECs) and microvascular formation. MethodsAfter cultured for 24 h in normoxia condition(21% O2),hypoxia condition (2% O2),and anaerobic condition (0% O2),respectively,morphology of A549 cells was observed with inverted phase contrast microscope,proliferation was detected by MTT assay,and intracellular hypoxia-inducible factor-1α (HIF-1α) protein was detected by immunocyto-chemical technique,for determining whether the hypoxia model is successful. Then A549 cells' supernatant in the normoxic group,the hypoxia group and HUVECs culture medium were taken to intervene HUVECs. The migration of HUVECs was observed with cell scratch test,pseudopodia formation of HUVECs was observed with microfilament green fluorescent staining method,and blood vessel formation was observed with three-dimensional culture techniques in vitro. ResultsCompared with the normoxic group,the growth of A549 cells was better in the hypoxia group with more proliferation,and was poor in the anaerobic group with decreased number of cells. A549 cells in the hypoxia group and the anaerobic group both expressed HIF-1α protein,which was more obvious in the anaerobic group. Compared with the HUVECs supernatant intervention group,the hypoxia supernatant intervention group and the normoxic supernatant intervention group both had varying degrees of migration,pseudopodia structure formation and vascular lumen sample structure formation,which were more obvious in the former group. ConclusionA549 cells in hypoxic environment grow very well,proliferated significantly,but anaerobic environment is not conducive to the growth of A549 cells which found to be apoptosis. A549 cells in hypoxic environment can promote HUVECs migration,pseudopodia formation and angiogenesis.

    Release date:2016-08-30 11:31 Export PDF Favorites Scan
  • Effects of Single Immunoglobin IL-1 Receptor Related Protein on Inflammation Induced by Cigarette Smoke Extract in A549 Cells

    ObjectiveTo investagte the effects of single immunoglobin IL-1 receptor related protein (SIGIRR) on inflammation induced by cigarette smoke extract (CSE) in A549 cells derived from mouse alveolar epithelial cells. MethodsA549 cells were divided into a control group and an over-expressed SIGIRR group. Eukaryotic expression vectors pcDNA3.1(+) constructed with SIGIRR cDNA were transiently transfected into A549 cells, in which SIGIRR was forced to be over-expressed. The expression level of SIGIRR after transfection was detected with Western blot and RT-PCR method. After stimulated by CSE in both groups, the protein level of IL-6 was detected by ELISA, the transcriptional activity of cyclooxygenase-2(COX-2) was detected by dual-luciferase reporter assay system, and the release of reactive oxygen species (ROS) was measured by chemiluminescence method. ResultsThe expression level of SIGIRR increased significantly in A549 cells transfected with SIGIRR vectors. The COX-2 expression and the levels of ROS and IL-6 were significantly increased in the control group after CSE stimulation. Nevertheless, in the over-expressed SIGIRR group, the COX-2 expression and the release of ROS was reduced while the protein level of IL-6 was down-regulated compared with the control group(P < 0.05). ConclusionsUp-regulated SIGIRR expression can suppress the levels of ROS, COX-2 and IL-6 in A549 cells stimulated by CSE. It suggests that SIGIRR can inhibit airway inflammation caused by smoking.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • Screening of Genes Differentially Expressed in A549 Cells Transfected with FOXO1 Using DNA Microarray

    Objective To study the differences in gene expression in A549 cells transfected with Forkhead box protein O1(FOXO1),and provide clues to further exploring the mechanism of FOXO1 in acute lung injury. Methods After using TNF-α to stimulate A549 cells,the eukaryotic expression vector GV230-FOXO1 was transfected into A549 cells by using lipofectamine transfection reagent.The RNA was isolated and differentially expressed genes were screened with high-throughout DNA microarray. Results The eukaryotic expression vector GV230-FOXO1 was successfully constructed and verified.High quality mRNA was isolated and prepared for microarray screening,which passed RNA quality control.The DNA microarray data indicated that 317 genes were up-regulated and 237 genes were down-regulated in A549 cells transfected with FOXO1.The function of these differentially expressed genes involved in many aspects,such as proliferation,apoptosis and differentiation. Conclusions Differentially expressed genes in A549 cells transfected with FOXO1 can be successfully screened by using DNA microarray.FOXO1 may influence the progression of the disease by changing the level of cell proliferation,apoptosis and differentiation in acute lung injury.

    Release date:2016-10-12 10:17 Export PDF Favorites Scan
  • Effects of hedysarum polysaccharides-1 on oxidative stress in lung adenocarcinoma A549 cells

    Objective To evaluate the expression of reactive oxygen species (ROS), glutataione (GSH), total superoxide dismutase (T-SOD), total antioxidation capacity (T-AOC), thioredoxin reductase (TrxR) under the intervention of hedysarum polysaccharides-1 (HPS-1) in A549 cells. Methods After treated by HPS-1 in different doses (50 mg/L, 100 mg/L, 200 mg/L, respectively), the viability of cell lines was detected by MTT method under microscope. The apoptosis of cell lines was detected by flow cytometry (FCM). The expressions of ROS, GSH, T-SOD, T-AOC, and TrxR in cell supernatant were measured by chemiluminescence method. Results Determined by MTT/FCM/ELISA, the results showed that different doses of HPS-1 could inhibit the proliferation and promote the apoptosis of A549 cells (allP<0.05). The expression levels of GSH, T-SOD, T-AOC, and TrxR were significantly decreased (allP<0.05) and the expression levels of ROS and MDA were significantly increased (allP<0.05) in a concentration-dependent manner in A549 cells treated with HPS-1, and these effects were significantly weakened in A549 cells with time extending (allP<0.05). Conclusion HPS-1 has a markedly effect on inhibiting cellular proliferation and inducing cellular apoptosis of lung adenocarcinoma A549 cells, which may be associated with the change of oxidation/antioxidant.

    Release date:2017-04-01 08:56 Export PDF Favorites Scan
  • Knockdown of estrogen receptor alpha inhibits the proliferation and migration of A549 cells and the formation of transplanted tumors in nude mice

    Objective To explore the effect of interfering RNA (shRNA) on biological activity of A549 cells and tumor growth in nude mice after knockdown of estrogen receptor α (ERα) gene. Methods The ERα gene in A549 cells was knocked down by shRNA. RT-PCR and Western blot were used to detect the gene expression and protein expression after knockdown; colony formation experiment was used to detect the proliferation of cells, and RT-PCR was used to detect the expression of Ki-67 and PCNA; flow cytometry was used to detect apoptosis rate; transwell assay was used to detect cell invasion ability; Western blot was used to detect the expression of epithelial cadherin (E-cad) and neuropathic cadherin (N-cad) protein. The control group and A549 cells transfected with ERα-shRNA1 were injected subcutaneously in nude mice to construct transplanted tumors. Immunohistochemistry was used to detect the expression of Ki-67 and N-cad in tumor tissues. Results Compared with the control group, after transfection of ERα-shRNA1 and ERα-shRNA2, the mRNA and protein expressions of ERα were reduced significantly (P<0.05), and shRNA1 with high interference efficiency was used for subsequent experiments. Compared with the control group, the A549 cells were transfected with ERα-shRNA1, the colony formation rate was down-regulated significantly (P<0.05), the apoptosis rate was increased significantly (P<0.05), the expression of Ki-67 and PCNA were down-regulated significantly (P<0.05), the number of invasive cells was reduced significantly, the expression of E-cad was increased, and the expression of N-cad was decreased (P<0.05). The results of tumor formation in nude mice showed that interfering with ERα expression can significantly inhibit tumor growth (P<0.05), and down-regulate the rate of Ki-67 and N-cad positive cells (P<0.05). Conclusion Knockdown of ERα inhibits the proliferation and migration ability of NSCLC cells and the occurrence and development of transplanted tumors in nude mice.

    Release date: Export PDF Favorites Scan
  • Application of in vivo imaging system to establish and evaluate an experimental mouse model of lung cancer

    Objective To monitor the importance of establishing lung cancer models for immunological treatment through in vivo imaging system (IVIS). Methods In this study, a new optical bioluminescence IVIS was used to confirm the tumour formation and luminescence in male BALB/c nude mice by injecting A549-luc cells. First, A549-luc cells which expressed luciferase stably were transferred into nude mice by tail vein injection in order to establish a stable and reliable model of lung cancer. Then, D-fluorescein potassium salt was intraperitoneally injected every other week. The tumor formation and growth were dynamically observed on day 7th, 14th and 21st by IVIS Spectrum and pathological exam with hematoxylin-eosin staining. Results Animal model of lung cancer was successfully established, and the development of lung cancer was effectively monitored by IVIS real-time fluorescence value which was consistent with pathological exam, and tumor volume was correlated with fluorescence intensity (r=0.7996, P<0.01). Conclusions IVIS has multiple benefits, including high sensitivity and specificity, simple operation, and no radiation. IVIS Spectrum can measure the fluorescence of tumor formed by injection of A549-luc cells in nude mice metastasis of lung cancer in a non-invasive, real-time and dynamic mode, which is worthy of promotion for using in clinical research.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content