The aim of this study is to assess ischemia/reperfusion injury in carbon tetrachloride induced cirrhotic liver as compared to normal liver in the rats. Results showed that in cirrhotic liver, instead of diminishing the hepatic vein nitric oxide level increased significantly after ischemia from 8.04 μmol/L to 11.52 μmol/L and remained high till 5 hrs after reperfusion. The hepatic adenosine triphosphate (ATP) contents decreased as that seen in normal rat but did not restore to normal till the end of 5 hrs after reperfusion. Based on these findings, it is postulated that in cirrhotic liver, ischemia/reperfusion injury is aggrvated as evidenced by of nitric oxide, and extended diminishing in ATP.
Objective To evaluate the clinical value and safety of adenosine monophosphate( AMP)bronchoprovocation test in patients with asthma. Methods Sixty asthmatics, including 19 cases with uncontrolled asthma, 22 with partially controlled asthma, and 19 with controlled asthma were enrolled. Twenty-four healthy volunteers were enrolled as control and 20 patients with upper respiratory tract infection ( URI) were also included. AMP bronchoprovocation test ( AMP-BPT) was performed. PD20 FEV1-AMP lt;40 mg was set as a cut-off value of positive response to AMP. Positive rate, sensitivity, specificity, accuracy and adverse reactions of AMP-BPT were evaluated. Eleven cases with uncontrolled asthma and 12 cases with partially controlled asthma were followed up with AMP-BPT three months and six months after inhaledcorticosteroids treatment. Asthma symptom scores were recorded a week early before each challenge. The correlation between PD20FEV1 -AMP and asthma symptom score was analyzed. Values of PD20 FEV1 -AMP were represented as median and quartile range [ M( QR) ] . Results No positive responses to AMP were found in both healthy and URI subjects. On the other hand, positive responses to AMP were found in all the uncontrolled asthmatics ( 100% ) with PD20FEV1 -AMP as 0. 6 mg ( 0. 4 mg) , in 19 partially controlled asthmatics ( 86. 4% ) with PD20 FEV1 -AMP as 5. 38 mg ( 32. 67 mg ) , and in 5 controlled asthmatics( 26. 3% ) with PD20FEV1 -AMP as 40 mg ( 29. 3 mg) . There were negative correlations between the logarithms of PD20 FEV1 -AMP and logarithms of asthma symptom scores ( r = - 0. 598, P lt; 0. 01) . The sensitivity, specificity and accuracy was 72% , 100%, and 84% , respectively. Percentage of subjects who experienced wheezing, cough, dyspnea, swallows stimulation, chest tightness, expectoration and cyanosis during AMP-BPT were 37. 5%, 21. 2%, 15. 4%,7. 7%, 7. 7%, 4. 8%, and 1. 0%, respectively. No severe adverse reaction was found. Conclusions AMP-BPT is helpful to the diagnosis and differential diagnosis of bronchial asthma. It also can be used to evaluate the severity and control level, and to monitor the therapeutic efficacy in clinical practice. Moreover, AMP-BPT is well tolerated with little adverse reaction.
Objective To investigate the effect of adiponectin on proliferation of airway smooth muscle cells( ASMCs) , and explore its possible mechanism. Methods ASMCs were derived fromrat airway tissue and were cultured in vitro. RT-PCR was used to verify the expression of adiponectin receptors on ASMCs. Then ASMCs were treated with adiponectin at different concentrations( 5, 10, 20, 40, 80 μg/mL) for different periods of time( 1, 12, 24, 48, 72 hours) , respectively. The absorbsence ratios of adiponectin at different concentrations were determined by MTT assay. The adenosine monophosphate-activated protein kinase( AMPK) and phosphorylated AMPK( pho-AMPK) in ASMCs were quantified by Western blot after being treated with adiponectin at different concentrations ( 5, 10, 20, 40 μg/mL) for 48 hours. ResultsThe inhibition of adiponectin on ASMCs was showed in dose-dependent manner( r = 0. 324, P lt; 0. 01) and time-dependent manner( r = 0. 607, P lt; 0. 05) . Western blot indicated that the expression of pho-AMPK increased with the increased concentrations of adiponectin( r =0. 607, P lt; 0. 01) . The ratio of pho-AMPK/AMPK were ( 27. 66 ±1. 03) % , ( 31. 91 ±0. 86 ) %, ( 75. 52 ±2. 67) % , and ( 84. 50 ±1. 05) % ,respectively, with significant differences between each concentrations of adiponectin( P lt; 0. 05) . There was no expression of pho-AMPK in the control group. Conclusion Adiponectin can significantly inhibit ASMCs’proliferation by activating AMPK.
Objective To investigate the changes and roles of myocardial adenosine triphosphate enzyme(ATPase) in the mechanism of cardiac dysfunction after blunt chest trauma(BCT). Methods Thirtysix rabbits were divided into 6 groups with random number table, control group, 2 h group, 4 h group, 8 h group, 12 h group and 24 h group, 6 in each group. The models of BCT were established with BIMⅡ biological impact machine, catheterization technique was used through the right jugular artery into the left ventricle measure its pressure. The hemodynamics and the activities of ATPase in myocardial cell plasm, homogenate and mitochondria were measured at preinjury(control group), 2 h, 4 h, 8 h, 12 h and 24 h postinjury. Results Left ventricular endsystolic pressure(LVESP), the maximal ascending rate of left intraventricular pressure(+dp/dtmax), isovolemec pressure(IP) and the maximal physiological velocity(Vpm) decreased significantly at 2 h group after BCT(Plt;0.05), and recovered to preinjury level in 4 h, 8 h and 12 h group during 4-12 h after BCT; isovolumic relaxation phase left ventricular pressure descending time constant (T). Left ventricular enddiastolic pressure(LVEDP) and the maximal descending rate of left intraventricular pressure(-dp/dtmax) were significantly higher (Plt;0.05, 0.01). The activity of ATPase in homogenate, mitochondria and cell plasm decreased significantly at 2 h group and 4 h group after BCT(Plt;0.05, 001, respectively), and 8 h group and 12 h group recovered after BCT. There was negative correlations between [CM(159mm]LVEDP and -dp/dtmax and the decrease of the activity of Na+-K+-ATPase in homogenate(r=-0.674, -0.691, Plt;0.05), the Ca2+-ATPase in homogenate(r=-0.613,-0.642, Plt;0.05), the Na+-K+-ATPase in mitochondria(r=-0.622,-0.616, Plt;0.05),the Ca2+-ATPase in myocardial cell plasm(r=-0.672,-0.658, Plt;0.05), the Na+-K+-ATPase in myocardial cell plasm(r=-0.627,-0.632,Plt;0.05),and the Mg2+-ATPase in myocardial cell plasm(r=-0.677,-0.661, Plt;0.05). Conclusion The left ventricular function is impaired obviously after BCT, especially in diastolic phase. The decrease of the activity of ATPase in myocardial cells may be one of the reasons of cardiac dysfunction after BCT.
Abstract: Objective To investigate the protective effects of adenosine (ADO) on lung ischemia/reperfusion injury following heart-lung transplantation in canine. Methods Canine heart-lung transplantation was performed.Canines were divided into two groups: transplant control groupand ADO group. The changes of arterial partial pressure of oxygen(PaO2) after reperfusion in two groups at 30,60,90,120 min were observed.The tissue contents of nitric oxide (NO) were measured at 10 min before ischemia, 10 min and 120 min after ischemia; 10 min and 60 min after reperfusion.The lung tissue samples were obtained 1h after reperfusion.The tissue myeloperoxidase(MPO) activity,content of malondialdehyde(MDA), content of superoxide dismutase(SOD), wet/dry ratio of lung(W/D) were measured.Microscopic examination of lungs was also conducted. Results (1)In ADO group,PaO2 were significantly higher than that in control group at 30,60,90 and 120 min after reperfusion (Plt;0.05).(2) The tissue contents of NO at 120 min after ischemia, 10 min and 60 min after reperfusion were significantly lower than that at 10 min before ischemia(Plt;0.05). In ADO group,the tissue contents of NO at 120 min after ischemia, 10 min and 60 min after reperfusion were higher than that in control group respectively(Plt;0.05). (3)The tissue MPO activity, content of MDA, W/D in ADO group were significantly lower than those in corresponding control group. The content of SOD in ADO group were higher than that in control group(Plt;0. 05).(4)The microscopic examination showed that there were severe leukocyte infiltration and edema formation in the alveolar space in control group, but the changes were less severe in ADO group. Conclusion Administration of ADO in canine heart-lung transplantation can protect the donor lung against ischemia/reperfusion injury.
Objective To investigate the mechanism of adenosine-tri phosphate (ATP) activated mammal ian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signal pathway in the physiology and pathology of spinal cord injury (SCI). Methods Ninety-six adult healthy female Sprague-Dawley rats were randomly divided into 4 groups (groups A, B, C and D, n=24). In groups A, B and C, the rats were made the SCI models at T8-10 levels by using a modified Allen’ s stall, and in group D, rats were given laminectomy without SCI. The rats were subjected to the administration of ATP (40 mg/kg) for 7 days in group A, to the administration of physiological sal ine (equal-volume) for 7 days in group B, to the administration of ATP (40 mg/kg) and rapamycin (3 mg/kg) for 7 days in group C, and to the administration of physiological sal ine (equal-volume) for 7 days in group D. Locomotor activity was evaluated using the Basso-Beattie-Bresnahan rating scale at the postoperative 1st, 2nd, 3rd, and 4th weeks. Then, the expressions of spinal cord cell marker [Nestin, neuron-specific enolase (NSE), gl ial fibrillary acidic protein (GFAP)] and the mTOR/STAT3 pathway factors (mTOR, STAT3) were detected at the postoperative 1st, 2nd, 3rd, and 4th weeks by immunohistochemistry analysis, Western blot assay, and real-time fluorescence PCR analysis. Results The BBB scores in group A showed a steady increase in the postoperative 1st-4th weeks and were significantly higher than those in groups B and C (P lt; 0.01), but were lower than that in group D (P lt; 0.01). Real-time fluorescence PCR results showed that the mRNA expressions of mTOR, STAT3, NSE of group A steadily increased, however, the Nestin mRNA expression gradually decreased in the postoperative 1st-4th weeks, which were all significantly higher than those of groups B, C, and D (P lt; 0.01). The mRNA expression of GFAP showed a steady increase in group A and was significantly less than those of groups B and C, but was higher than that of group D (P lt; 0.01). There were significant differences (Plt; 0.01) in all markers between groups B, C, and group D; there were significant differences in mTOR, P-mTOR, STAT3, and P-STAT3 mRNA between groups B and C at 1st-4th weeks (P lt; 0.05). The similar changes were found by Western blot assay. Conclusion ATP can activate the mTOR/STAT3 pathway to induce endogenic NSCs to prol iferate and differentiate into neurons in rats, it enhances the heal ing of SCI.
Objective Adenosine tri phosphate (ATP) can promote the repair of spinal cord injury (SCI). To investigate the effect of ATP combined with bone marrow mesenchymal stem cells (BMSCs) transplantation on SCI, and to evaluate the synergistic action of ATP and BMSCs in the repair of SCI and the feasibil ity of the combined transplantation in the treatment of SCI. Methods BMSCs were isolated from the marrow of the tibia and the femur of a male SD rat (weighing 120 g), the 3rd generation BMSCs were labeled with BrdU, then BMSCs suspension of 5.0 × 107 cell/mL were prepared. Fortyeightadult female SD rats (weighing 240-260 g) were made SCI models at T12 levels according to the improved Allen’s method, and were randomly divided into 4 groups (groups A, B, C, and D, n=12). In group A, ATP (40 mg/kg) and BMSCs (6 μL) were injected to the central point and the other 2 points which were 1 mm from the each side of head and tail of the injured spinal cord; after blending the BMSCs suspension, the cells amount was about 3.0 × 105. In groups B, C, and D, the BMSCs suspension (6 μL), ATP (40 mg/kg), and PBS (40 mg/kg) were injected to the points by the same method as group A, respectively. The general conditions of the rats were observed after operation. The nerve function of low extremities was evaluated using the improved Tarlov scale and the Rivil in incl ined plane test at 1, 3, 7, 14, 21, and 28 days after operation. At 28 days after operation, the reparative effect of SCI was observed using histological and immunohistochemical staining. Results One rat of group A, 2 of group B, 2 of group C, and 3 of group D died of infection and anorexic, the others survived to the end of the experiment. Paralysis symptom in low extremities occurred in all rats after operation and was improved at 2-3 weeks postoperatively, the improvement of group A was the best, groups B and C were better, group D was the worst. There was no significant difference in the Tarlov scale and the Rivil in incl ined plane test among 4 groups at 1 and 3 days after operation and between groups B and C at 7, 14, 21, and 28 days after operation (P gt; 0.05), but there were significant differences among other groups at 7, 14, 21, and 28 days after operation (P lt; 0.05). At 28 days after operation, HE staining demonstrated that the injured region in group A was finely restored, without obvious scar tissue and cavity, and there existed clear stem cell differentiation characters; there was small amount of scar tissue and cavity in the injury site of groups B and C; and there was great deal of scar tissue in the injury site of group D, in which there were numerous inflammatory cells and fibroblasts infiltration and bigger cavity. Immunohistochemical staining showed that BrdU-positive BMSCs were seen in groups A and B, and positive cells of group A was significantly more than that of group B (P lt; 0.05). The expressions of neruofilament protein 200 and gl ial fibrillary acidic protein in group A were significantly higher than those in groups B, C, and D, and groups B and C were significantly higher than group D (P lt; 0.05). Conclusion ATP has protective effects on injured spinal cord, a combination of ATP and BMSCs can synergistically promote the reparation of SCI.
Objective To study the distribution of P2 Y2 receptor in spine cord, dorsal root ganglia and sciatic nerve in rat, and to provide the basis for clarifying the mechanism of the effect of adenosine triphosphate(ATP) on the peripheral nerve regeneration. Methods Six specimens of the spine cord, dorsal root ganglia and sciatic nerve from SD rats were fixed rapidly in 4% paraformaldehyde which included DEPC, imbedded by paraffin and made into ultrathin section. According to the sequence of P2 Y2 receptor’s gene, DNA needle was adopted to detect the distribution of P2 Y2 receptor by hybridization technique in section under the light microscope after theyhad been stained in NBT liquid(50 mg/ml) and BCIP liquid (75 mg/ml). In thecontrol group, the ultrathin section was only covered with hybridism buffer solution. The result of staining was observed. ResultsHybridization in section showed that P2 Y2 receptor was distributed mainly in the anterior horn cell of spine cordgray matter and Schwann cell of the dorsal root ganglia. No P2 Y2 receptor was observed in the sciatic nerve of both groups. Conclusion P2 Y2 receptor is located mainly in the spine cord and the dorsal root ganglia. Extracellular ATP can affect the cell of spine cord, dorsal root ganglia through P2 Y2 receptor.
Objective To evaluate the inhibiting effect of adenosine on rat retinal ganglion cells (RGC) death induced by P2X7 and N-methyl-D-aspartate (NMDA) receptor. Methods (1) Long-Evan neonatal rats were back labeled with aminostilbamidine to identify RGC. The viability of RGC affected by P2X7 excitomotor BzATP (50 mu;mol/L), glutamate receptor excitomotor NMDA (100 mu;mol/L) and adenosine (300 mu;mol/L) was detected. (2) RGC from the retinae of unlabeled neonatal rats were cultured in vitro. After labeled with Fura-2 methyl acetate, an intracellular calcium indicator, the effect of BzATP, NMDA and adenosine on intracellular Ca2+ level was detected byCa2+ imaging system. Results Both BzATP (50 mu;mol/L) and NMDA(100 mu;mol/L) could kill about 30% of the RGC. Cell death was prevented by adenosine (300 mu;mol/L) with the cell viability increased from (68.9plusmn;2.3)% and (69.9plusmn;3.2)% to (91.2plusmn;3.5)% (P<0.001) and (102.1plusmn;3.9)% (P<0.001), respectively. BzATP (50 mu;mol/L) led to a large, sustained increase of intracellular Ca2+ concentration to (1183plusmn;109) nmol/L. After the adenosine intervened, Ca2+ concentration increased slightly to (314plusmn;64) nmol/L (P<0.001). Conclusion Adenosine may prevent RGC death and increase of intracellular Ca2+ concentration from P2X7and NMDA receptor stimulation. (Chin J Ocul Fundus Dis, 2007, 23: 133-136)
Objective To investigate the value of adenosine deaminase (ADA) for the diagnosis of tuberculous serous cavity fluidify. Methods The literatures on the application of ADA for the diagnosis of tuberculous serous cavity fluidify in the database including PUBMED and CNKI were reviewed. Results Studies including randomized controlled trial or meta-analysis have performed to determine the level of ADA in the effusion of tuberculous serous cavity fluidify. These studies have sufficiently proved that ADA is a specific and sensitive method for the diagnosis of extrapulmonary tuberculosis. Most of the studies have determined the optimal cut-off value of ADA in the effusion of tuberculous serous cavity fluidify. Conclusion Measurement of ADA in the effusion of tuberculous serous cavity fluidify is widely used as a fast, convenient, safe and effective adjunctive diagnostic method of tubeculosis in clinic.