Objective To investigate the mechanism of adenosine-tri phosphate (ATP) activated mammal ian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signal pathway in the physiology and pathology of spinal cord injury (SCI). Methods Ninety-six adult healthy female Sprague-Dawley rats were randomly divided into 4 groups (groups A, B, C and D, n=24). In groups A, B and C, the rats were made the SCI models at T8-10 levels by using a modified Allen’ s stall, and in group D, rats were given laminectomy without SCI. The rats were subjected to the administration of ATP (40 mg/kg) for 7 days in group A, to the administration of physiological sal ine (equal-volume) for 7 days in group B, to the administration of ATP (40 mg/kg) and rapamycin (3 mg/kg) for 7 days in group C, and to the administration of physiological sal ine (equal-volume) for 7 days in group D. Locomotor activity was evaluated using the Basso-Beattie-Bresnahan rating scale at the postoperative 1st, 2nd, 3rd, and 4th weeks. Then, the expressions of spinal cord cell marker [Nestin, neuron-specific enolase (NSE), gl ial fibrillary acidic protein (GFAP)] and the mTOR/STAT3 pathway factors (mTOR, STAT3) were detected at the postoperative 1st, 2nd, 3rd, and 4th weeks by immunohistochemistry analysis, Western blot assay, and real-time fluorescence PCR analysis. Results The BBB scores in group A showed a steady increase in the postoperative 1st-4th weeks and were significantly higher than those in groups B and C (P lt; 0.01), but were lower than that in group D (P lt; 0.01). Real-time fluorescence PCR results showed that the mRNA expressions of mTOR, STAT3, NSE of group A steadily increased, however, the Nestin mRNA expression gradually decreased in the postoperative 1st-4th weeks, which were all significantly higher than those of groups B, C, and D (P lt; 0.01). The mRNA expression of GFAP showed a steady increase in group A and was significantly less than those of groups B and C, but was higher than that of group D (P lt; 0.01). There were significant differences (Plt; 0.01) in all markers between groups B, C, and group D; there were significant differences in mTOR, P-mTOR, STAT3, and P-STAT3 mRNA between groups B and C at 1st-4th weeks (P lt; 0.05). The similar changes were found by Western blot assay. Conclusion ATP can activate the mTOR/STAT3 pathway to induce endogenic NSCs to prol iferate and differentiate into neurons in rats, it enhances the heal ing of SCI.
Epilepsy is a complex disease spectrum, because of long-term recurrent seizures and seriously affect the quality of life of patients, it is of great significance to explore the pathogenesis of epilepsy and actively seek new therapeutic targets. In this paper, the pathogenesis of epilepsy related to mitochondrial pathway was discussed from the aspects of energy depletion, oxidative stress damage, impaired calcium homeostasis, increased glutamic acid release, mitochondrial DNA mutation, Coenzyme Q10 deficiency, abnormal mitochondrial movement and change, and relevant therapeutic ideas were proposed. This paper shows that mitochondrial function affects the onset of epilepsy from various ways. Further understanding of the relationship between mitochondria and the onset of epilepsy is beneficial to find new therapeutic targets and develop new therapies beyond the control of epilepsy.