The application of stem cell therapy for ischemic heart disease has aroused widespread interest. There have been many experimental studies concerning a variety of tissue stem cells such as bone marrow,blood,skin and skeletalmuscle stem cells,and their origins, differentiation and protein expressions are compared. In recent years,it is found that adipose-derived stromal cells (ADSCs) have potential advantages over other types of stem cells in that they are widely available and easily harvested through a simple liposuction procedure,and have a high regenerative capacity and therapeuticpotential for myocardial infarction. This review describes molecular and biological properties of ADSCs,their differentiationpotential,and regenerative and therapeutic potential for myocardial repair.
Objective To further study the influence of the co-cultivation of vascular endothel ial cells (VECs) and adi pose-derived stromal cells (ADSCs) on cell osteogenic differentiation in vitro and provide experimental evidences of the probabil ity of the co-cultivation of VECs and ADSCs as the seed cells of tissue engineering. Methods The VECs derived fromcord blood and ADSCs were prepared by full-term pregnancy SD rats and 18-week-old SD rats, to carry on the morphological observation and immunohistochemical staining identification. The third generation of ADSCs and the VECs induced by conditioned medium for 6 weeks were cultured and were divided into groups A, B, and C as the experimental group according to cell ratios of 3 ∶ 1, 1 ∶ 1, and 1 ∶ 3, respectively. ADSCs or VECs was cultured alone in groups D and E as control groups. ALP and al izarin red staining were done respectively on the 7th day and 14th day; ALP and osteocalcin (OC) were detected respectively on the 4th day, 7th day, and 14th day. Results The VECs derived from cord blood showed mixed growth of short spindle and polygonal cells after 6 weeks of induction, the immunofluorescent staining result of von Willebrand factor was positive. ADSCs showed adherent mononuclear cells and spindle-shaped growth without dupl ication; the immunofluorescent staining result of CD90 was positive and no positive cells were seen in the control group. On the 7th day of cell culture, ALP staining showed that the results were negative in groups A, D, and E, and some positive cells were seen in groups B and C; on the 14th day, the results were still negative in groups D and E, and positive cells fused to sheet form in groups A, B, and C. von Kossa staining showed that the results were negative in all groups on the 7th day; few positve cells were seen in groups A, B, and C, and no positive cells were seen in groups D and E on the 14th day. The ALP contents increased gradually in all groups,which was highest in group B at every time point, showing significant difference (P lt; 0.01) between group B and other groups, between groups A, C and groups D, E. The OC value increased gradually in every group, which was highest in group B on the 7th and 14th days, showing significant difference between group B and other groups (P lt; 0.01), between group C and group D (P lt; 0.01) on the 4th and the 14th days, between groups A, C and group E (P lt; 0.05) on the 14th day. Conclusion ADSCs have potential of osteogenic differentiation by VECs in the system of co-culturing VECs and ADSCs in vitro, the influence on osteogenic differentiation is the best in a ratio of 1 ∶ 1.
Objective To compare two kinds of myofascial flap encapsulating adi pose-derived stromal cells (ADSCs) in adi pogenic efficacy in vivo, and to provide experimental basis for the efficient transplantation of free adi pose tissue. Methods ADSCs were isolated from the subcutaneous adipose tissue in the neck of 10 New Zealand rabbits (aged 3-4 months old, male and female, weighing 2.0-2.5 kg), and primary culture and subculture of ADSCs were conducted. When the cells at passage 3 covered 70%-80% of the bottom of the culture flask, BrdU (10 μg/mL) was appl ied to label the cells for 48 hours before performing immunofluorescence staining. Oil red O staining observation was conducted to thosecells 2 weeks after being induced towards adi pocyte, al izarin red staining observation was performed 3 weeks after being induced towards osteoblast, and alcian blue staining was conducted 2 weeks after being induced towards chondrocyte. Besides, after being induced towards adipocyte for 2 weeks, 1 × 107 ADSCs/piece at passage 3 labeled by BrdU was seeded into Col I (10 mm × 10 mm × 5 mm/piece) to prepare cell carrier complex. The experiment was divided into two groups: group A in which vascular pedicled dextral latissimus dorsi fascial flap was adopted to encapsulate the complex; group B in which dextral gluteus maximus fascial flap with no specific vessel pedicle was appl ied to encapsulate the complex. Rabbits in each group went through autogenous ADSCs transplant and self control. The implants were dislodged 8 weeks after operation, HE staining and immunohistochemistry staining were performed to testify cambium, the wet weight and micro vessel count of the cambium in each group were tested, immunofluorescence staining was performed to determine the origin of cambium and microvascular endothel ium. Results The nucleus of ADSCs positive for BrdU label ing showed green fluorescence under fluorescence microscope, with the positive label ing ratio of ADSCs above 90%. For ADSCs at passage 3, the formation of red l ipid droplets within cells was observed 2 weeks after being induced towards adipocyte, red calcium nodules were evident 3 weeks after being induced towards osteoblast, and highly congregated cell mass positive for alcian blue staining appeared 2 weeks after being induced towards chondrocyte. Eight weeks after operation, neogenetic blood vessel grew into scaffolds and no obvious fibreencapsulation was observed in group A, while few blood vessel grew into scaffolds in group B. The wet weight of cambium in group A and B was (0.149 5 ± 0.017 3) g and (0.095 3 ± 0.012 7) g, respectively, indicating there was a significant difference between two groups (P lt; 0.01). HE staining showed the formation of neogenetic adipose tissue and the growth of micrangium in the implant, and the degradation and absorption of scaffold. The micro vessel count of group A and B was 31.2 ± 4.5 and 19.3 ± 2.6, respectively, indicating there was a significant difference between two groups (P lt; 0.01). Eight weeks after operation, the immunofluorescence staining of cambium showed that the cell nucleus of regenerated adi pocytes and partial capillary endothel ium in groups A and B presented green fluorescence. Conclusion ADSCs encapsulated by vascular pedicled latissimus dorsi fascial flap and collagen protein scaffold complex has a higher adi pogenic efficacy in vivo than the gluteus maximus fascial flap with no specific vessel pedicle.