Objective To evaluate the effects of composite bone in strategy of tissue engineering on bone defect repair in rats. Methods Sixteen matured Wistar rats (male or female, weighing 250-300 g) were used to prepare platelet lysate (PL). PL/allogeneic decalcified bone granules (ADBG)/Col I (PAC) and ADBG/Col I (AC) were prepared by mixing Col Igel ADBG with or without PL. BMSCs of 8 Wistar rats (male or female, weighing 250-300 g) were isolated and cultured. The 5th passage of BMSCs were co-cultured with PAC at the density of 1 × 106 cells/mL to fabricate the tissue engineered composite PACB in vitro. Forty healthy Wistar rats were made bilateral bone defects in femoral condyles and divided into 4 groups (A, B, C and D, n=10). The defects were filled with equivalent PACB, PAC, AC and Col I in groups A, B, C and D respectively. At 4 weeks, the defect repair was evaluated with radiology, histology, ALP biochemical tests. Results At 4 weeks, the bone density measurement was (7.31 ± 0.54), (4.36 ± 0.67), (2.12 ± 0.47), and (1.09 ± 0.55) pixels in groups A, B, C, and D, respectively. The area of new bone formation in defect area under single view was (412.82 ± 22.31), (266.57 ± 17.22), (94.34 ± 20.22), and (26.12 ± 12.51) pixels in groups A, B, C and D respectively. The ALP contents in femoral condyles were (94.31 ± 7.54), (69.88 ± 4.12), (41.33 ± 3.46), and (21.03 ± 3.11) U/L, respectively. The above indexes of group A were significantly higher than those of groups B, C or D (P lt; 0.05). Three-color flow cytometry assay showed that the T lymphocyte subsets of CD3+CD4+CD8-, CD3+CD8+CD4-, and the ratio of CD4/CD8 displayed no significant difference among four groups (P gt; 0.05). Conclusion Tissue engineered bone PACB is capable to promote the bone defect repair.