ObjectiveTo study the effects of aminoguanidine (AG), a selective inhibitor of inducible nitric oxide synthase (iNOS) on the pathological changes of liver tissues and ultrastructural changes of liver cells in rodent model of endotoxic shock. MethodsTwentyfour male Wistar rats were randomly divided into normal control group,lipopolysaccharide (LPS) control group and AG treatment group, each group had 8 rats. Rats were challenged by E.coli LPS to set up the model of endotoxic shock, AG group were treated by aminoguanidine. The pathological and ultrastructural changes of liver tissues and plasma NO contents of three groups were observed and compared. ResultsLight microscopy revealed that many tiny abscesses scattered in liver tissue in LPS group, accompanied by necrosis of liver cells and neutrophils infiltration, while liver injuries of AG group were much slighter than that in LPS group. Electron microscopy revealed that there were dissolved plaques in hepatocyte nuclears, swelling of mitochondria, decreasing in number of mitochondrial ridges, while AG play a protective role to nuclears and mitochondria of hepatocytes. The plasma NO levels of LPS control group were higher than that of normal control group, and plasma NO levels decreased significantly after AG treatment, but still higher than that of normal control group. Conclusion Aminoguanidine selectively inhibits iNOS activity and prevents the overproduction of NO induced by iNOS, thus attenuates the damages of liver structure induced by NO. This method has potential value in clinical application, which deserves more deep research.
Objective Aminoguanidine (AG) can reduce brain edema and increase the recovery of neuron functions in surgical brain injury and stroke. To investigate the effect of AG on spinal cord injury (SCI) in rats and its mechanism. Methods A total of 150 adult male Sprague Dawley rats (weighing, 230-255 g) were divided into control group (group A, 25 rats without treatment), the sham-operated group (group B, 25 rats undergoing laminectomy), SCI group (group C, 25 SCI rats with injection of 5%DMSO), SCI + AG groups (groups D, E, and F, 25 SCI rats and AG injection of 75, 150, and 300 mg/kg, respectively). The optimal dosage of AG was screened by dry-wet weight method with the percentage of water content at 0, 12, 24, and 48 hours after injury. The blood-spinal cord barriar permeability was further detected by Evans blue (EB) method, aquaporins 4 (AQP4) mRNA expression by RT-PCR, AQP4 protein expression by immunohistochemistry and Western blot. Results AG injection at dosage of 150 mg/kg can significantly reduce edema of spinal cords at 12, 24, and 48 hours after SCI (P lt; 0.05), so 150 mg/kg was the optimal dosage. The EB content in group E was significantly lower than that in group C at 12, 24, and 48 hours after SCI, and the permeability of blood-spinal cord barrier was significantly decreased compared with group C (P lt; 0.05). The AQP4 mRNA expressions in groups B and E were significantly lower than that in group C at 12, 24, and 48 hours after SCI (P lt; 0.05). AQP4 protein expressions in groups B and E were significantly lower than that in group C at 24 and 48 hours after SCI (P lt; 0.05) by Western blot. Immunohistochemical staining revealed that AQP4 protein expression in group C was significantly higher than that in groups B and E (P lt; 0.05) at 48 hours after SCI, but no significant difference was found between group B and group E (P gt; 0.05). Conclusion AG injection at dosage of 150 mg/kg can induce spinal cord edema and injury in rats, which could be correlated with the down-regulation of AQP4 expression.
Objective To investigate the effect of inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine on pancreas islets cultured with cytokines TNF-α and IL-1β in rats. Methods Islets isolated from Wistar rats were purified and cultured. According to whether cytokines TNF-α, IL-1β and aminoguanidine were added into the medium respectively or not, islets were divided into 4 groups: cultured with islet only was taken as blank control group, cultured with TNF-α+IL-1β as cytokine group, cultured with aminoguanidine as aminoguanidine group, and cultured with TNF-α+IL-1β and aminoguanidine as aminoguanidine+cytokine group. NO level in culture medium and iNOS activity in islets tissue (Test Kit), apoptosis (TUNEL method) and viability of islets cell (acridine orange/ethidium bromide stain), and the function of islets (insulin release test) were measured. Results Compared with blank control group, the activity of iNOS in islet tissue and level of NO in culture medium increased, and the mass mortality and apoptosis appeared in islet cells, while insulin secretion decreased in cytokine group (P<0.01). Compared with cytokine group, the activity of iNOS 〔(3.17±0.51) U/ml vs. (38.93±4.72) U/ml〕 and level of NO 〔(50.5±10.4) μmol/L vs. (313.0±35.4) μmol/L〕 decreased, the survival 〔(72.73±3.14)% vs. (57.07±5.07)%〕 increased and the apoptosis rate 〔(20.11±8.48)% vs. (41.17±6.87)%〕 decreased, the insulin secretion (secretion index: 3.50±0.27 vs. 1.96±0.19) improved; There were all significant differences in 2 groups (P<0.01). Conclusion The iNOS inhibitor aminoguanidine could prevent the islet from the damage of iNOS/NO, alleviate the impairment of cytokines to islets, and ameliorate the survival and function of islets.
Objective To study the expression of receptor of advanced glycation end products (RAGE) in autogenous vein graft of streptozotocin induced diabetic rats and the inhibitory effects of aminoguanidine on intimal hyperplasia. Methods Sixty male Sprague-Dawley rats were randomly divided into three groups: aminoguanidine group, distilled water group and control group. Autogenous vein graft models were established in all groups. Streptozotocin was injected into abdominal cavity to induce diabetes in both aminoguanidine group and distilled water group, and they were intragastric administrated with aminoguanidine or distilled water, respectively before and after transplantation. Specimens were collected from autogenous vein graft 7 days and 14 days after surgery to undergo histological examination. At the same time, the level of serum advanced glycation end products (AGE) was tested. Western blotting and immunohistochemistry were used to detect the protein expression of RAGE and NF-κB p65. RAGE and NF-κB p65 mRNA were measured by reverse transcription-PCR. Results The mRNA and protein expressions of RAGE, NF-κB p65, the level of serum AGE and the intimal thickness of vein graft in distilled water group increased in comparison with those in control group 7 days and 14 days after surgery (P<0.05). The level of serum AGE, mRNA and protein expressions of NF-κB p65 and the intimal thickness of vein graft in aminoguanidine group were lower than those in distilled water group (P<0.05), and showed no significant difference compared with control group (P>0.05). Conclusion The over-expression of RAGE in vein graft activats NF-κB in streptozotocin-induced diabetic rat, which has a close relation with intimal hyperplasia. Aminoguanidine can block the binding of AGE and RAGE by inhibiting the production of AGE, which will prevent intimal hyperplasia of vein graft.