ObjectiveTo observe the correlation between posterior myopic retinoschisis(MRS) and posterior scleral staphyma (PS) in pathological myopia (PM), and to preliminarily explore the influencing factors of MRS.MethodsA retrospective case series study. From November 2016 to November 2019, 38 patients with PM with MRS diagnosed in Henan Eye Hospital & Henan Eye Institute from were included in the study. There were 10 males and 28 females; 13 patients were binocular and 25 patients were monocular. The average age was (49±13) years old. BCVA, retinoscopy optometry, frequency domain OCT, three-dimensional magnetic resonance imaging (3D-MRI) examination and axial length (AL) measurement were performed. According to the frequency domain OCT inspection results, MRS was divided into inner splitting, outer splitting and mixed splitting; based on the 3D-MRI scan results, PS was divided into broad macula, narrow macula,discoid, nasal, subdisc and other types. The correlation between MRS and PS was tested by χ2 test or Fisher exact test.ResultsAmong 60 eyes, 58 eyes (96.77%) of MRS combined with PS. Among them, the wide macula, narrow macula, discoid, nasal, subdisc, and other types were 30 (51.72%), 19 (32.75%), 1 (1.72%), 2 (3.48%), 2 (3.48%) and 4 (6.85%) eyes; inner split, outer split, and mixed split were 10 (17.24%), 24 (41.38%), 24 (41.38%) eyes. Of the 19 eyes with narrow macular PS, MRS involved the fovea in 16 eyes; of the 39 eyes with PS of other forms, MRS involved the fovea in 22 eyes. There was a statistically significant difference between the narrow macular type and other types involving foveal eyes (P=0.044). The correlation between MRS involving the fovea and narrow macular PS was moderate (Cramer's V=0.275). The ages of patients with inner split, outer split, and mixed split were 44±12, 56±10, and 44±13 years, respectively. Patients with inner splitting were younger than those with outer splitting, and those with outer splitting were older than those with inner splitting and mixed splitting. The differences were statistically significant (P=0.010, 0.010, 0.060).ConclusionPM with MRS mostly occur in PS-affected eyes, and mainly macular PS (wide macula, narrow macula).
ObjectiveTo compare the quantitative measurements of the retinal capillary nonperfusion areas in a cohort of proliferative diabetic retinopathy (PDR) patients with fluorescein fundus angiography (FFA) and swept source optical coherence tomography angiography (SS-OCTA), and to determine the intrapersonal variability between examiners.MethodsA cross-sectional study. Eighteen eyes of eleven PDR patients diagnosed in Department of ophthalmology of Henan Provincial People's Hospital from September 2019 to January 2020 were included in this study. FFA was performed using Spectralis HRA+OCT (Germany Heidelberg Company) from and SS-OCTA was performed using VG200D (China Vision Micro Image Corporation). SS-OCTA was used to collect images of retinal layer, superficial capillary plexus (SCP) and deep capillary plexus (DCP). The same observation area was 80°×60° for SS-OCTA and 55° for FFA with both setting centered on the fovea. The forty-nine retinal capillary nonperfusion areas were observed. The area measurement was completed independently by three examiners. Paired sample t test or paired sample Wilcoxon test were used to compare the measured values of retinal capillary nonperfusion areas between the two examination methods and among the three examiners.ResultsThere was no significant difference in the retinal layer, SCP and DCP nonperfusion area measured by FFA and SS-OCTA among the three examiners (P>0.05), and the consistency is good (consistency correlation coefficient>0.9, P<0.05). The nonperfusion area measured by FFA was 0.786 mm2. The median nonperfusion area of retinal layer and SCP measured by SS-OCTA were 0.787 mm2 and 0.791 mm2, respectively, and the average nonperfusion area of DCP was 0.878±0.366 mm2. The nonperfusion area of retinal layer and SCP measured by FFA and SS-OCTA showed no statistically significant difference (P=0.054, 0.198). The nonperfusion area of DCP measured by SS-OCTA was significantly larger than that of FFA, and the difference was statistically significant (P<0.001). The results of repeatability analysis showed that 93.88% (46/49) of the DCP nonperfusion area data measured by SS-OCTA were greater than those measured by FFA.ConclusionThe retinal nonperfusion area of DCP in PDR patients measured by SS-OCTA is larger than that of FFA.
Objective To observe the anastomotic status of the vortex veins in patients with central serous chorioretinopathy (CSC). MethodsA cross-sectional study of clinical practice. From July 2021 to July 2022, 50 cases (50 eyes) of monocular CSC patients diagnosed through ophthalmic examination at the First Affiliated Hospital of Zhengzhou University were included in the study. Among them, there were 37 males (74.0%, 37/50) and 13 females (26.0%, 13/50), with the mean age of (44.30±9.59) years old. The course of disease from the onset of symptoms to the time of treatment was less than 3 months. The affected eye and contralateral eye of CSC patients were divided into the affected eye group and contralateral eye group, respectively. Fifty healthy volunteers of the same age and gender were selected as the normal control group with 50 eyes. The macular area scanning source optical coherence tomography (OCT) vascular imaging examination was performed with Visual Microimaging (Henan) Technology Co., Ltd. VG200D. Horizontal watershed vortex veins anastomosis rate and asymmetric vortex-venous dilation rate were observed by en face OCT. The device comes with software to calculate the central foveal choroidal thickness (SFCT), mean choroidal thickness (MCT), and choroidal vascular index (CVI). One-way analysis of variance and χ2 test were used to compare the three groups. When variances were unequal between groups, nonparametric tests were performed. ResultsThe SFCT values of the affected eye group, contralateral eye group, and normal control group were (567.12±129.02), (513.26±133.17), (327.64±97.40) μm, respectively; MCT were (407.38±97.54), (388.24±94.13), (275.46±60.55) μm, respectively; CVI were 0.34±0.05, 0.32±0.04, and 0.27±0.04, respectively; anastomosis rates of vortex veins were 98% (49/50), 78% (39/50), and 40% (20/50), respectively; asymmetric dilation rates of vortex veins were 96% (48/50), 88% (44/50), and 48% (24/50), respectively. The differences of SFCT (F=53.974), MCT (Z=51.415), CVI (F=28.082), vortex vein anastomosis rate (χ2=43.056), asymmetric dilation rate of vortex veins (χ2=37.728) among three groups were statistically significant (P<0.001). Compared with the contralateral eye group, the SFCT, MCT, CVI, vortex vein anastomosis rate, and vortex vein asymmetric dilation rate in the affected eye group were significantly higher than those in the contralateral eye group. Among them, the differences of SFCT (t=2.054), CVI (t=2.211), and vortex vein anastomosis rate (χ2=9.470) were statistically significant (P<0.05); the differences of MCT (Z=7.490), asymmetric dilation rate of vortex veins(χ2=2.714) were not statistically significant (P=1.000, 0.140). ConclusionsSFCT, MCT, and CVI in the affected and contralateral eyes of monocular CSC patients significantly increase. The anastomotic rate and asymmetric dilation rate of the vortex vein in the opposite eye were lower than those in the affected eye.
Objective To quantitatively evaluate the changes of choroidal biomarkers in patients with central serous chorioretinopathy (CSC) and preliminarily explore its pathogenesis. MethodsClinical cross-sectional study. From July 2021 to December 2022, 74 eyes of 65 patients with CSC (CSC group) confirmed by ophthalmic examination at the First Affiliated Hospital of Zhengzhou University were included in the study. Among them, 46 patients (51 eyes) were male, 19 patients (23 eyes) were female. The duration from the onset of symptoms to the time of treatment was less than or equal to 3 months. A control group consisted of 40 healthy volunteers (74 eyes) matched in age and gender. Among them, 26 patients (50 eyes) were male, and 14 patients (24 eyes) were female. Using VG200D from Microimaging (Henan) Technology Co., Ltd., macular scanning source light coherence tomography angiography was performed, with scanning range 6 mm × 6 mm. According to the division of the diabetes retinopathy treatment research group, the choroid within 6 mm of the macular fovea was divided into three concentric circles centered on the macular fovea, namely, the central area with a diameter of 1 mm, the macular area with a diameter of 1-3 mm, and the surrounding area of the fovea with a diameter of 3-6 mm. The device comes with software to record the three-dimensional choroidal vascular index (CVI), choroidal vascular volume (CVV), perfusion area of the choroidal capillary layer (CFA), choroidal thickness (CT), and three-dimensional CVI, CVV, and CT in the upper, temporal, lower, and subnasal quadrants within 6 mm of the fovea. Quantitative data between the two groups were compared using an independent sample t-test. Qualitative data comparison line χ2 inspection. The value of receiver operating curve (ROC) analysis in predicting the occurrence of CSC, including CVI, CVV, CFA, and CT. ResultsCompared with the control group, the CVI (t=3.133, 4.814), CVV (t=7.504, 9.248), and CT (t=10.557, 10.760) in the central and macular regions of the affected eyes in the CSC group significantly increased, while the CFA (t=-8.206, -5.065) significantly decreased, with statistically significant differences (P<0.05); CVI (t=7.129), CVV (t=10.020), and CT (t=10.488) significantly increased within 6 mm of the central fovea, while CFA (t=-2.548) significantly decreased, with statistically significant differences (P<0.05). The CVI (t=4.980, 4.201, 4.716, 8.491), CVV (t=9.014, 7.156, 7.719, 10.730), and CT (t=10.077, 8.700, 8.960, 11.704) in the upper, temporal, lower, and lower nasal quadrants within 6 mm of the central fovea were significantly increased, with statistically significant differences (P<0.05). In the CSC group, the maximum CVI and CVV were (0.39±0.10)% and (1.09±0.42) mm3, respectively, on the nasal side of the affected eye. Upper CT was (476.02±100.89) μm. The nasal side CVI, CVV, and CT have the largest changes. The ROC curve analysis results showed that the area under the curve of CT, CVV, and CVI within 6 mm of the central region, macular region, and fovea was over than 0.5. Subcentral CT was the most specific for the diagnosis of CSC. ConclusionChoroidal biomarkers CVI, CVV, and CT in CSC patients increase, while CFA decreases. Central CT is the most specific for the diagnosis of CSC.
ObjectiveTo observe the clinical characteristics and risk factors associated with pachydrusen in eyes affected by central serous chorioretinopathy (CSC). MethodsA retrospective clinical study. From July 2021 to June 2024, 144 cases and 158 eyes of CSC patients diagnosed through ophthalmological examination at Department of Ophthalmology of The First Affiliated Hospital of Zhengzhou University were included. All affected eyes underwent a series of assessments, including refraction, intraocular pressure measurement, fundus color photography, fluorescein fundus angiography (FFA), and swept-source optical coherence tomography (OCT). Additionally, 58 eyes underwent indocyanine green angiography (ICGA). Cross-sectional (en-face) OCT was utilized to observe the colocalization of pachydrusen with areas of dilation of large choroidal vessels and attenuation of the choriocapillaris layer. The device was used for OCT included software for calculating subfoveal choroidal thickness (SFCT). FFA fluorescein leakage was categorized into “ink stain”, “cooking smoke”, and “diffuse point leakage”. Patients were classified into groups of CSC patients complicated by pachydrusen and groups of CSC patients without pachydrusen. Comparisons between the groups were performed using the χ2 test, and factors associated with the presence of pachydrusen were analyzed using logistic regression. ResultsAmong 158 eyes, 72 eyes (45.6%, 72/158) were complicated by pachydrusen. In en-face OCT images, pachydrusen were co-located with dilated outer choroidal vessels in 59 eyes (81.94%, 59/72) and corresponded to choroidal capillary layer blood flow holes in 61 eyes (84.72%, 61/72). Among the 58 eyes that underwent ICGA examination, pachydrusen corresponded to punctate strong fluorescence in 46 eyes (79.31%, 46/58) and were located in areas of choroidal hyperpermeability in 43 eyes (74.14%, 43/58). Compared with the CSC group without pachydrusen, the incidence of choroidal neovascularization, flat irregular pigment epithelial detachment, diffuse punctal leakage and multiple leakage points increased in the CSC group, and the differences were statistically significant (χ2=6.217, 8.455, 5.363, 17.749; P<0.05). Logistic regression analysis indicated that age [odds ratio (OR)=1.116, 95% confidence interval (CI) 1.060-1.176, P<0.001], chronic CSC [OR=2.628, 95%CI 1.250-5.526, P=0.011] were independent risk factors for the occurrence of pachydrusen. ConclusionsThe incidence of pachydrusen in eyes with CSC is 45.6%, with age and cCSC identified as independent risk factors for their occurrence. Pachydrusen correspond to dilated choroidal vessels and areas of choroidal hyperpermeability, which may serve as potential risk factors for CSC activity or development.