west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "An Jinjin" 2 results
  • Comparative analysis of urokinase arterial thrombolytic therapy for central retinal artery occlusion in different time window

    ObjectiveTo observe the efficacy and safety of urokinase arterial thrombolysis in the treatment of central retinal artery occlusion (CRAO) at different time window.MethodsA retrospective study. From January 2014 to November 2019, 157 eyes (157 CRAO patients) in the Xi’an People's Hospital (Xi’an Fourth Hospital) were included in the study. There were 120 males and 37 females, with the average age of 54.87±12.12 years. The mean onset time was 65.66±67.44 h. All patients were tested with BCVA using international standard visual acuity chart, and the results were converted into logMAR visual acuity record. The arm-retinal circulation time (A-Rct) and the filling time (FT) of retinal arterial trunk-terminal filling time were measured by FFA. The mean logMAR BCVA was 2.44±0.46, the mean A-Rct and FT were 27.72±9.78 and 13.58±14.92 s respectively. According to the time window, the patients were divided into the onset 3-72 h group and the onset 73-240 h group, which were 115 patients and 42 patients respectively. There were no statistically significant difference between the 3-72 h group and the 73-240 h group in age, A-Rct and LogMR BCVA before treatment (χ2=-0.197, -1.242, -8.990; P=0.844, 0.369, 0.369); the difference was statistically significant in FT comparison (χ2=-3.652, P=0.000). Urokinase artery thrombolytic therapy was performed at different time window of 3-24 h, 25-72 h, 73-96 h, 97-120 h, 121-240 h after the onset of onset. Age and A-Rct of patients with different treatment time windows were compared, and the differences were not statistically significant (χ2=6.588, 6.679; P=0.253, 0.246).In comparison of FT and logMAR BCVA, the difference was statistically significant (χ2 =30.150, 71.378; P=0.000, 0.000). FFA was rechecked 24 hours after treatment, BCVA was rechecked 30 days after treatment. The changes of A-Rct, FT and BCVA before and after treatment were compared and analyzed. The occurrence of adverse reactions during and after treatment were observed. The two groups of measurement data were compared. The t test was used for those with normal distribution and χ2 test was used for those with non-normal distribution. Spearman correlation analysis was used to analyze the correlation between onset time and the difference of A-Rct, FT shortening time and logMAR BCVA after treatment.ResultsAt 24 h after CRAO treatment, A-Rct and FT of 157 cases were 19.64±6.50 and 6.48±7.36 s respectively, which were significantly shorter than those before treatment, and the differences were statistically significant (χ2=-16.236, -14.703; P=0.000, 0.000). The logMAR BCVA at 30 d after treatment was 1.72±0.76, which was significantly higher than that before treatment. The difference was statistically significant (χ2=-14.460, P=0.000). After CRAO urokinase arterial thrombolysis at different time window, there were statistically significant differences in A-Rct shortening time, FT shortening time, and logMAR BCVA difference (χ2=12.408, 24.200, 104.388; P=0.030, 0.000, 0.000). There was no statistically significant difference between the 3-72 h group and the 73-240 h group (χ2 =-1.042, P=0.297) in shortening time of A-Rct after treatment. The difference of FT shortening time was statistically significant (χ2=-3.581, P=0.000). The difference of logMAR BCVA was statistically significant (χ2=-9.905, P=0.000). The results of Spearman correlation analysis showed that there was no correlation between the onset time and the shortening time of A-Rct and FT after treatment (rp=-0.040, -0.081; P=0.436, 0.115), and negative correlation with the logMAR BCVA difference (rp=-0.486, P=0.000). One case of intracranial hemorrhage occurred after treatment, and it improved after dehydration to reduce cerebral edema, scavenging free radicals and brain protection.ConclusionsUrokinase arterial thrombolytic therapy is effective for CRAO within time window of 3-240 h, A-Rct, FT and LogMRA BCVA are all improved. However, with the prolongation of thrombolytic therapy time window, the therapeutic effect of urokinase arterial thrombolytic therapy is decreased. The therapeutic effect of Urokinase arterial thrombolytic therapy was better within 72 h.

    Release date:2020-11-19 09:16 Export PDF Favorites Scan
  • The effect of internal boundary membrane detachment on visual acuity in the affected side of non-arteriotic central retinal artery occlusion

    Objective To observe the clinical and imaging features of non-arteriotic central retinal artery occlusion (NA-CRAO) with internal boundary membrane detachment (ILMD), and to analyze its relationship with visual prognosis. MethodsA retrospective clinical study. A total of 88 patients with NA-CRAO hospitalized in Department of Ophtalmology, Xi'an People's Hospital (Xi'an Fourth Hospital) from January 2014 to June 2023 were included in the study. Best corrected visual acuity (BCVA), optical coherence tomography (OCT) and fluorescein fundus angiography (FFA) were performed. The BCVA test used the international standard visual acuity chart, which was statistically converted to the logarithm of the minimum angle of resolution (logMAR) visual acuity. OCT observed the presence of ILMD and the thickening of the inner retina and the disappearance of anatomical stratification. FFA recorded arm-retinal circulation time (A-Rct) and retinal arterion-distal filling time (FT), and observed ciliary retinal artery, fluorescein retrograde filling, cotton spots, luciferin nodal filling, macular non-perfusion, capillary fluorescein leakage, optic disc strong fluorescence, choroidal background weak fluorescence and other characteristics. According to whether there was ILMD, the patients were divided into ILMD group and non-ILMD group, with 44 cases and 44 eyes respectively. The two groups received the same treatment. The follow-up time was 30 days after treatment. The clinical, FFA characteristics and BCVA before and after treatment were compared between the two groups. t-test was used for comparison between groups. ResultsIn ILMD group and non-ILMD group, there were 43 cases of male and 1 case of female, respectively, and the proportion of male was significantly higher than that of female. Before and after treatment, the logMAR BCVA of ILMD group and non-ILMD group were 2.35±0.42, 2.01±0.46, 1.47±0.60, 0.77±0.49, respectively. There were significant differences in logMAR BCVA between the two groups before and after treatment (t=8.025, 12.358; P<0.001). Before treatment, A-Rct and FT in ILMD group were longer than those in non-ILMD group, and the difference was statistically significant (t=3.052, 3.385; P<0.05). After treatment, there was no significant difference (t=1.040, 1.447; P>0.05). The proportion of ciliary retinal artery and cotton plaque in ILMD group was lower than that in non-ILMD group. There was no significant difference in ciliary retinal artery between the two groups (χ2=-0.961, P>0.05), but there was a significant difference in cotton wool plaque between the two groups (χ2=-3.364, P<0.05). Compared to the non-ILMD group, The proportion of retrograde fluorescein filling in retinal artery (χ2=-2.846), segment filling (χ2=-3.907), macular non-perfusion (χ2=-6.656), capillary fluorescein leakage (χ2=-4.367), optic disc strong fluorescence (χ2=-3.525) and choroidal background weak fluorescence (χ2=-2.276) increased, the difference was statistically significant (P<0.05). ConclusionsIn patients with NA-CRAO, compared with those without ILMD, those with ILMD have more severe retinal ischemia and worse BCVA before and after treatment. ILMD is one of the poor prognostic markers of NA-CRAO vision.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content