west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Atrous convolution" 3 results
  • Segmentation of ground glass pulmonary nodules using full convolution residual network based on atrous spatial pyramid pooling structure and attention mechanism

    Accurate segmentation of ground glass nodule (GGN) is important in clinical. But it is a tough work to segment the GGN, as the GGN in the computed tomography images show blur boundary, irregular shape, and uneven intensity. This paper aims to segment GGN by proposing a fully convolutional residual network, i.e., residual network based on atrous spatial pyramid pooling structure and attention mechanism (ResAANet). The network uses atrous spatial pyramid pooling (ASPP) structure to expand the feature map receptive field and extract more sufficient features, and utilizes attention mechanism, residual connection, long skip connection to fully retain sensitive features, which is extracted by the convolutional layer. First, we employ 565 GGN provided by Shanghai Chest Hospital to train and validate ResAANet, so as to obtain a stable model. Then, two groups of data selected from clinical examinations (84 GGN) and lung image database consortium (LIDC) dataset (145 GGN) were employed to validate and evaluate the performance of the proposed method. Finally, we apply the best threshold method to remove false positive regions and obtain optimized results. The average dice similarity coefficient (DSC) of the proposed algorithm on the clinical dataset and LIDC dataset reached 83.46%, 83.26% respectively, the average Jaccard index (IoU) reached 72.39%, 71.56% respectively, and the speed of segmentation reached 0.1 seconds per image. Comparing with other reported methods, our new method could segment GGN accurately, quickly and robustly. It could provide doctors with important information such as nodule size or density, which assist doctors in subsequent diagnosis and treatment.

    Release date: Export PDF Favorites Scan
  • Image segmentation of skin lesions based on dense atrous spatial pyramid pooling and attention mechanism

    The skin is the largest organ of the human body, and many visceral diseases will be directly reflected on the skin, so it is of great clinical significance to accurately segment the skin lesion images. To address the characteristics of complex color, blurred boundaries, and uneven scale information, a skin lesion image segmentation method based on dense atrous spatial pyramid pooling (DenseASPP) and attention mechanism is proposed. The method is based on the U-shaped network (U-Net). Firstly, a new encoder is redesigned to replace the ordinary convolutional stacking with a large number of residual connections, which can effectively retain key features even after expanding the network depth. Secondly, channel attention is fused with spatial attention, and residual connections are added so that the network can adaptively learn channel and spatial features of images. Finally, the DenseASPP module is introduced and redesigned to expand the perceptual field size and obtain multi-scale feature information. The algorithm proposed in this paper has obtained satisfactory results in the official public dataset of the International Skin Imaging Collaboration (ISIC 2016). The mean Intersection over Union (mIOU), sensitivity (SE), precision (PC), accuracy (ACC), and Dice coefficient (Dice) are 0.901 8, 0.945 9, 0.948 7, 0.968 1, 0.947 3, respectively. The experimental results demonstrate that the method in this paper can improve the segmentation effect of skin lesion images, and is expected to provide an auxiliary diagnosis for professional dermatologists.

    Release date: Export PDF Favorites Scan
  • Ischemic stroke infarct segmentation model based on depthwise separable convolution for multimodal magnetic resonance imaging

    Magnetic resonance imaging (MRI) plays a crucial role in the diagnosis of ischemic stroke. Accurate segmentation of the infarct is of great significance for selecting intervention treatment methods and evaluating the prognosis of patients. To address the issue of poor segmentation accuracy of existing methods for multiscale stroke lesions, a novel encoder-decoder architecture network based on depthwise separable convolution is proposed. Firstly, this network replaces the convolutional layer modules of the U-Net with redesigned depthwise separable convolution modules. Secondly, an modified Atrous spatial pyramid pooling (MASPP) is introduced to enlarge the receptive field and enhance the extraction of multiscale features. Thirdly, an attention gate (AG) structure is incorporated at the skip connections of the network to further enhance the segmentation accuracy of multiscale targets. Finally, Experimental evaluations are conducted using the ischemic stroke lesion segmentation 2022 challenge (ISLES2022) dataset. The proposed algorithm in this paper achieves Dice similarity coefficient (DSC), Hausdorff distance (HD), sensitivity (SEN), and precision (PRE) scores of 0.816 5, 3.668 1, 0.889 2, and 0.894 6, respectively, outperforming other mainstream segmentation algorithms. The experimental results demonstrate that the method in this paper effectively improves the segmentation of infarct lesions, and is expected to provide a reliable support for clinical diagnosis and treatment.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content