Foam stability affects the efficacy and incidence of side effects of foam sclerotherapy. Exploring the relationship between foam pressure difference and foam stability can provide ideas and basis for obtaining more stable foam. In the experiment, sodium cod liver oleate foam was selected, and poloxamer 188 (concentration of 0%, 4%, 8%, 12%) was added to realize the change of foam pressure. By using the self-written program to process the foam pictures, the foam pressure difference and the relationship between the foam stability indicators (water separation rate curve, half-life) and the foam pressure difference were obtained. The results showed that at first the foam pressure increased with the increase of the concentration, and then it decreased with the increase of the concentration and reached a peak at the concentration of 4%. The foam pressure difference decreases continuously with the increase of decay time. When the additive concentration is low, the foam average pressure difference increases. And if the additive concentration is too high, the foam average pressure difference decreases. The smaller the foam pressure difference is, the better the foam stability is. This paper lays a foundation for the research on the stability of foam hardener.
Lower limb amputation is a significant change in body structure. Loss of muscle, blood vessels, and blood leads to a redistribution of blood flow and changes in resistance at the end of blood vessels. In view of the significant increase in the prevalence of cardiovascular disease after lower limb amputation, the mechanism of which is still unclear, this study aims to establish an animal research model that can verify and explore the effects of amputation on cardiovascular system, and provide the experimental basis for subsequent animal experiments when exploring the effect of different amputation levels on the cardiovascular system. SPF New Zealand rabbits were divided into normal group (n = 6) and amputation group (n = 6). The amputation group was treated with above-knee amputation. The changes of low-density liptein cholesterol (LDL-C) and total cholesterol (TC) in serum of all the rabbits were monitored regularly after the surgery. The arterial pathological examination was conducted after the experimental rabbits were executed. The results showed that compared with the normal group, serum LDL-C content and TC content in the amputation group were significantly increased (P<0.05); The blood vessels of the amputated rabbits had pathological changes such as degeneration and necrosis of smooth muscle cells in the middle membrane layer and rupture of elastic fibers. At the abdominal aorta and aortic arch, the elastic fiber area expression percentage (EFEP) of the experimental group was significantly lower than that of the normal group. The results suggest that the cardiovascular system of rabbits has the tendency of decreased arterial elasticity and lipid deposition in blood after amputation, indicating that the animal research model on the effect of amputation on the cardiovascular system has been successfully established, and can provide an experimental platform for further study on the mechanism of the effect of amputation on the cardiovascular system.
Vascular injury resulting from lower limb amputation leads to the redistribution of blood flow and changes in vascular terminal resistance, which can affect the cardiovascular system. However, there was no clear understanding of how different amputation levels affect the cardiovascular system in animal experiments. Therefore, this study established two animal models of above-knee amputation (AKA) and below-knee amputation (BKA) to explore the effects of different amputation levels on the cardiovascular system through blood and histopathological examinations. The results showed that amputation caused pathological changes in the cardiovascular system of animals, including endothelial injury, inflammation, and angiosclerosis. The degree of cardiovascular injury was higher in the AKA group than in the BKA group. This study sheds light on the internal mechanisms of amputation’s impact on the cardiovascular system. Based on the amputation level of patients, the findings recommend more comprehensive and targeted monitoring after surgery and necessary interventions to prevent cardiovascular diseases.