west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "BP neural network" 2 results
  • Analysis of epileptic seizure detection method based on improved genetic algorithm optimization back propagation neural network

    In order to improve the accuracy and efficiency of automatic seizure detection, the paper proposes a method based on improved genetic algorithm optimization back propagation (IGA-BP) neural network for epilepsy diagnosis, and uses the method to achieve detection of clinical epilepsy rapidly and effectively. Firstly, the method extracted the linear and nonlinear features of the epileptic electroencephalogram (EEG) signals and used a Gaussian mixture model (GMM) to perform cluster analysis on EEG features. Next, expectation maximization (EM) algorithm was used to estimate GMM parameters to calculate the optimal parameters for the selection operator of genetic algorithm (GA). The initial weights and thresholds of the BP neural network were obtained through using the improved genetic algorithm. Finally, the optimized BP neural network is used for the classification of the epileptic EEG signals to detect the epileptic seizure automatically. Compared with the traditional genetic algorithm optimization back propagation (GA-BP), the IGA-BP neural network can improve the population convergence rate and reduce the classification error. In the process of automatic detection of epilepsy, the method improves the detection accuracy in the automatic detection of epilepsy disorders and reduced inspection time. It has important application value in the clinical diagnosis and treatment of epilepsy.

    Release date:2019-02-18 03:16 Export PDF Favorites Scan
  • Prediction and influencing factors analysis of bronchopneumonia inpatients’ total hospitalization expenses based on BP neural network and support vector machine models

    ObjectiveTo predict the total hospitalization expenses of bronchopneumonia inpatients in a tertiay hospital of Sichuan Province through BP neural network and support vector machine models, and analyze the influencing factors.MethodsThe home page information of 749 cases of bronchopneumonia discharged from a tertiay hospital of Sichuan Province in 2017 was collected and compiled. The BP neural network model and the support vector machine model were simulated by SPSS 20.0 and Clementine softwares respectively to predict the total hospitalization expenses and analyze the influencing factors.ResultsThe accuracy rate of the BP neural network model in predicting the total hospitalization expenses was 81.2%, and the top three influencing factors and their importances were length of hospital stay (0.477), age (0.154), and discharge department (0.083). The accuracy rate of the support vector machine model in predicting the total hospitalization expenses was 93.4%, and the top three influencing factors and their importances were length of hospital stay (0.215), age (0.196), and marital status (0.172), but after stratified analysis by Mantel-Haenszel method, the correlation between marital status and total hospitalization expenses was not statistically significant (χ2=0.137, P=0.711).ConclusionsThe BP neural network model and the support vector machine model can be applied to predicting the total hospitalization expenses and analyzing the influencing factors of patients with bronchopneumonia. In this study, the prediction effect of the support vector machine is better than that of the BP neural network model. Length of hospital stay is an important influencing factor of total hospitalization expenses of bronchopneumonia patients, so shortening the length of hospital stay can significantly lighten the economic burden of these patients.

    Release date:2021-02-08 08:00 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content