OBJECTIVE: To construct tissue engineering bone with bio-derived materials and bone marrow stromal cells (MSCs), and to investigate the effect of allogeneic engineering bone implants on healing of segmental bone defects. METHODS: MSCs being aspirated aseptically from tibial tuberosities of young rhesus monkeys were induced into osteoblasts in vitro and then were cultured and marked with 5-bromo-2-deoxyuridine (BrdU). Tissue engineering bones were constructed with these labeled osteoblasts being seeded onto bio-derived materials made from fresh human bones which were treated physically and chemically, Then the constructs were implanted in 15 allogeneic monkeys to bridge 2.5 cm segmental bone defects of left radius as experimental groups, bio-derived materials only were implanted to bridge same size defects of right radius as control group. and, 2.5 cm segmental bone defects of both sides of radius were left empty in two rhesus monkeys as blank group. Every 3 monkeys were sacrificed in the 1st, 2nd, 3rd, 6th and 12th weeks postoperatively and both sides of the implants samples were examined macroscopically, histologicaly, and immunohistochemicaly. The two monkeys in blank group were sacrificed in the 12th week postoperatively. RESULTS: Apparent inflammatory reactions were seen around both sides of the implants samples in the 1st, 2nd, 3rd weeks, but it weakened in the 6th week and disappeared at the 12th week. The labeled osteoblasts existed at the 6th week but disappeared at the 12th week. The bone defects in experimental group were repaired and the new bone formed in multipoint way, and osteoid tissue, cartilage, woven bone and lamellar bone occurred earlier when compared with control group in which the bone defects were repaired in ’creep substitution’ way. The bone defects in blank group remained same size at the 12th week. CONCLUSIONS: Engineering bones constructed with bio-derived materials and MSCs were capable of repairing segmental bone defects in allogeneic monkeys beyond ’creep substitution’ way and making it healed earlier. Bio-derived materials being constituted with allogeneic MSCs may be a good option in construction of bone tissue engineering.