Objective To provide the chosen scaffold materials for experiment and application of tissue engineering and to detect the properties of the collagenbio-derived bone scaffold material loading WO-1. Methods The purebio-derived bone scaffold material, bio-derived bone scaffold material loading collagen, collagen bio-derived bone scaffold material loading WO-1 were made by use of allograftbone, and typeI collagen, and WO-1. The morphological features, constitute components and mechanical properties were examined by scanning electron microscopy,X- rays diffraction and mechanical assay. Results The bio-derived bone scaffold material maintained natural network pore system; the bio-derived bone scaffold material loading collagen maintained natural network pore system, the surface of network pore system was coated by collagen membrane; the collagen bio-derived bone scaffold material loading WO-1 maintained natural network pore system, thesurface of network pore system was coated by collagen membrane. The pore sizes of the 3materials were 90-700 μm, 75-600 μm and 80-600 μm, respectively, and the porosities were 87.96%, 80.47%, 84.2%. There was no significant difference between them(P>0.05).The collagen bio-derived bone scaffold material loading WO-1 consisted of [HA,Ca10(OH)2(PO4)6]. There was no significant difference in the mechanical strength of the three scaffold materials. Conclusion The bio-derived bone scaffold material loading WO-1 is as good as bio-derived bone scaffold material and collagen bio-derived bone scaffold material, and it is an effective scaffold material for tissue engineering bone.
OBJECTIVE: To evaluate the cellular compatibility of three natural xenogeneic bone derived biomaterials. METHODS: Three types of natural xenogeneic bone derived biomaterials were made with physical and chemical treatment, composite fully deproteinized bone(CFDB), partially deproteinized bone(PDPB) and partially decalcified bone(PDCB). Three types biomaterials were cocultured with human embryonic periosteal osteoblasts. The cell growth, attachment, cell cycle, alkaline phosphatase activity were detected to evaluate the cellular compatibility to biomaterials. RESULTS: Osteoblasts attached on all three biomaterials and grew well, the effect of three biomaterials on cell proliferation was PDCB gt; PDPB gt; CFDB. The cell cycle was not obviously affected by three biomaterials. The effect of three biomaterials on alkaline phosphatase activity of osteoblasts was PDCB gt; PDPB gt; CFDB. CONCLUSION: CFDB,PDPB,PDCB have good cellular compatibility without cytotoxic and tumorigenicity, CFDB is the best. The three biomaterials can be used as scaffold materials of bone tissue engineering.