west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Biocompatibility" 41 results
  • Research Progress of Genipin Cross-linking in Tissue Engineering in the Field of Cardiothoracic Surgery

    Decellularized tissue engineering scaffolds appear to have the properties of similar structure and mechanical characteristics to native tissues,good biocompatibility,suitability for cell adhesion,growth and angiogenesis induction,and non-immunogenicity. Genipin has anti-inflammatory,antithrombotic and antioxidative features which can considerably suppress vascular and endothelial inflammatory activation,increase mechanical strength of biological scaffolds,inhibit inflammatory response and decrease degradation rate of biological scaffolds. By cross-linking with decellularized matrices,Genipin can further improve corresponding performance of tissue engineering matrices,which is very helpful to promote the application of tissue engineering into clinical practice of cardiothoracic surgery. This review focuses on recent research process and possible prospects of Genipin cross-linking in tissue engineering in the field of cardiothoracic surgery.

    Release date:2016-08-30 05:47 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON CULTIVATION AND PURIFICATION OF Schwann CELLS AND ITS COMPOSITION WITH SMALL INTESTINAL SUBMUCOSA IN VITRO

    Objective To obtain highly purified and large amount of Schwann cells (SCs) by improved primary culture method, to investigate the biocompatibility of small intestinal submucosa (SIS) and SCs, and to make SIS load nerve growth factor (NGF) through co-culture with SCs. Methods Sciatic nerves were isolated from 2-3 days old Sprague Dawley rats and digested with collagenase II and trypsin. SCs were purified by differential adhesion method for 20 minutes and treated with G418 for 48 hours. Then the fibroblasts were further removed by reducing fetal bovine serum to 2.5% in H-DMEM. MTT assay was used to test the proliferation of SCs and the growth curve of SCs was drawn. The purity of SCs was calculated by immunofluorescence staining for S-100. SIS and SCs at passage 3 were co-cultured in vitro. And then the adhesion, proliferation, and differentiation of SCs were investigated by optical microscope and scanning electron microscope (SEM). The NGF content by SCs was also evaluated at 1, 2, 3, 4, 5, and 7 days by ELISA. SCs were removed from SIS by repeated freeze thawing after 3, 5, 7, 10, 13, and 15 days of co-culture. The NGF content in modified SIS was tested by ELISA. Results The purity of SCs was more than 98%. MTT assay showed that the SCs entered the logarithmic growth phase on the 3rd day, and reached the plateau phase on the 7th day. SCs well adhered to the surface of SIS by HE staining and SEM; SCs were fusiform in shape with obvious prominence and the protein granules secreted on cellular surface were also observed. Furthermore, ELISA measurement revealed that, co-culture with SIS, SCs secreted NGF prosperously without significant difference when compared with the control group (P gt; 0.05). The NGF content increased with increasing time. The concentration of NGF released from SIS which were cultured with SCs for 10 days was (414.29 ± 20.87) pg/cm2, while in simple SIS was (4.92 ± 2.06) pg/cm2, showing significant difference (P lt; 0.05). Conclusion A large number of highly purified SCs can be obtained by digestion with collagenase II and trypsin in combination with 20-minute differential adhesion and selection by G418. SIS possesses good biocompatibility with SCs, providing the basis for further study in vivo to fabricate the artificial nerve conduit.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • BIOCOMPATIBILITY OF SILICON CONTAINING MICRO-ARC OXIDATION COATED MAGNESIUM ALLOY ZK60 WITH OSTEOBLASTS CULTURED IN VITRO

    Objective To research in vitro biocompatibility of silicon containing micro-arc oxidation (MAO) coated magnesium alloy ZK60 with osteoblasts. Methods The surface microstructure of silicon containing MAO coated magnesium alloy ZK60 was observed by a scanning electron microscopy (SEM), and chemical composition of the coating surface was determined by energy dispersive spectrum analysis. The experiments were divided into 4 groups: silicon containing MAO coated magnesium alloy ZK60 group (group A), uncoated magnesium alloy ZK60 group (group B), titanium alloy group (group C), and negative control group (group D). Extracts were prepared respectively with the surface area to extraction medium ratio (1.25 cm2/ mL) according to ISO 10993-12 standard in groups A, B, and C, and were used to culture osteoblasts MC3T3-E1. The α-MEM medium supplemented with 10% fetal bovine serum was used as negative control in group D. The cell morphology was observed by inverted phase contrast microscopy. MTT assay was used to determine the cell viability. The activity of alkaline phosphatase (ALP) was detected. Cell attachment morphology on the surface of different samples was observed by SEM. The capability of protein adsorption of the coating surface was assayed, then DAPI and calcein-AM/ethidium homodimer 1 (calcein-AM/EthD-1) staining were carried out to observe cell adhesion and growth status. Results The surface characterization showed a rough and porous layer with major composition of Mg, O, and Si on the surface of silicon containing MAO coated magnesium alloy ZK60 by SEM. After cultured with the extract, cells grew well and presented good shape in all groups by inverted phase contrast microscopy, group A was even better than the other groups. At 5 days, MTT assay showed that group A presented a higher cell proliferation than the other groups (P lt; 0.05). Osteoblasts in groups A and C presented a better cell extension than group B under SEM, and group A exhibited better cell adhesion and affinity. Protein adsorption in group A [ (152.7 ± 6.3) µg/mL] was significantly higher than that of group B [(96.3 ± 3.9) µg/mL] and group C [ (96.1 ± 8.7) µg/mL] (P lt; 0.05). At each time point, the adherent cells on the sample surface of group A were significantly more than those of groups B and C (P lt; 0.05). The calcein-AM/EthD-1 staining showed that groups A and C presented better cell adhesion and growth status than group B. The ALP activities in groups A and B were 15.55 ± 0.29 and 13.75 ± 0.44 respectively, which were significantly higher than those in group C (10.43 ± 0.79) and group D (10.73 ± 0.47) (P lt; 0.05), and group A was significantly higher than group B (P lt; 0.05). Conclusion The silicon containing MAO coated magnesium alloy ZK60 has obvious promoting effects on the proliferation, adhesion, and differentiation of osteoblasts, showing a good biocompatibility, so it might be an ideal surface modification method on magnesium alloys.

    Release date:2016-08-31 04:07 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF ARTICULAR CARTILAGE SCAFFOLD FOR TISSUE ENGINEERING

    Objective To review the research progress of articular cartilage scaffold materials and look into the future development prospects. Methods Recent literature about articular cartilage scaffold for tissue engineering was reviewed, and the results from experiments and clinical application about natural and synthetic scaffold materials were analyzed. Results The design of articular cartilage scaffold for tissue engineering is vital to articular cartilage defects repair. The ideal scaffold can promote the progress of the cartilage repair, but the scaffold materials still have their limitations. Conclusion It is necessary to pay more attention to the research of the articular cartilage scaffold, which is significant to the repair of cartilage defects in the future.

    Release date:2016-08-31 04:21 Export PDF Favorites Scan
  • PREPARATION AND BIOCOMPATIBILITY OF A NOVEL BIOMIMETIC OSTEOCHONDRAL SCAFFOLD: COLLAGEN-CHITOSAN/NANO-HYDROXYAPATITE-COLLAGEN-POLYLACTIC ACID

    Objective To prepare collagen-chitosan /nano-hydroxyapatite-collagen-polylactic acid (Col-CS/ nHAC-PLA) biomimetic scaffold and to examine its biocompatibility so as to lay the foundation for its application on the treatment of osteochondral defect. Methods PLA was dissolved in dioxane for getting final concentration of 8%, and the nHAC power was added at a weight ratio of nHAC to PLA, 1 ∶ 1. The solution was poured into a mold and frozen. CS and Col were dissolved in 2% acetum for getting the final concentrations of 2% and 1% respectively, then compounded at a weight ratio of CS to Col, 20 ∶ 1. The solution was poured into the frozen mold containing nHAC-PLA, and then biomimetic osteochondral scaffold of Col-CS/nHAC-PLA was prepared by freeze-drying. Acute systemic toxicity test, intracutaneous stimulation test, pyrogen test, hemolysis test, cytotoxicity test, and bone implant test were performed to evaluate its biocompatibility. Results Col-CS/nHAC-PLA had no acute systemic toxicity. Primary irritation index was 0, indicating that Col-CS/nHAC-PLA had very slight skin irritation. In pyrogen test, the increasing temperature of each rabbit was less than 0.6℃, and the increasing temperature sum of 3 rabbits was less than 1.3℃, which was consistent with the evaluation criteria. Hemolytic rate of Col-CS/nHAC-PLA was 1.38% (far less than 5%). The toxicity grade of Col-CS/nHAC-PLA was classified as grade I. Bone implant test showed that Col-CS/nHAC-PLA had good biocompatibility with the surrounding tissue. Conclusion Col-CS/ nHAC-PLA scaffold has good biocompatibility, which can be used as an alternative osteochondral scaffold.

    Release date:2016-08-31 04:24 Export PDF Favorites Scan
  • INFLUENCE OF THREE CENTRAL VENOUS CATHETER BIOMEDICAL MATERIALS ON PROLIFERATION, APOPTOSIS, AND CELL CYCLE OF XUANWEI LUNG CANCER-05 CELLS

    ObjectiveTo explore the influence of three central venous catheter biomedical materials (polyurethane, silicone, and polyvinyl chloride) on the proliferation, apoptosis, and cell cycle of Xuanwei Lung Cancer-05 (XWLC-05) cells so as to provide the basis for clinical choice of central venous catheter. MethodsXWLC-05 cells were cultured and subcultured, and the cells at passage 3 were cultured with polyurethane, silicone, and polyvinyl chloride (1.0 cm × 1.0 cm in size), and only cells served as a control. At 24, 48, and 72 hours after cultured, MTT assay was used to detect the cellular proliferation and flow cytometry to detect the cell cycle and apoptosis. At 72 hours after cultured, inverted microscope was used to observe the cell growth. ResultsInverted microscope showed the cells grew well in control group, polyurethane group, and silicone group. In polyvinyl chloride group, the cells decreased, necrosed, and dissolved; residual adherent cells had morphologic deformity and decreased transmittance. At 24 and 48 hours, no significant difference in proliferation, apoptosis, and cell cycle was found among 4 groups (P gt; 0.05). At 72 hours, the proliferations of XWLC-05 cells in three material groups were significantly inhibited when compared with control group (P lt; 0.05), and the cells in polyvinyl chloride group had more significant proliferation inhibition than polyurethane group and silicone group (P lt; 0.05), but there was no signifcant difference in proliferation inhibition between polyurethane group and silicone group (P gt; 0.05). Compared with the control group, three material groups had significant impact on the rate of apoptosis and cell cycle: polyvinyl chloride group was the most remarkable, followed by silicone group, polyurethane group was minimum (P lt; 0.05). ConclusionPolyvinyl chloride can significantly impact the proliferation, apoptosis, and cell cycle of XWLC-05 cells; polyurethane has better biocompatibility than polyvinyl chloride and silicone

    Release date:2016-08-31 05:39 Export PDF Favorites Scan
  • PREPARATION OF DECELLULARIZED CAPRINE CAROTIDS AND ITS BIOCOMPATIBILITY

    Objective To study the preparation method of acellular vascular matrix and to evaluate its biocompatibil ity and safety so as to afford an ideal scaffold for tissue engineered blood vessel. Methods Fresh caprine carotids (length, 50 mm) were harvested and treated with repeated frozen (—80 )/thawing (37℃), cold isostatic pressing (506 MPa, 4 ), and 0.125% sodium dodecyl sulfate separately for preparation of acellular vascular matrix. Fluorescence staining and DNA remain test were used to assess the cell extracting results. Biological characteristics were compared with the raw caprine carotids using HE staining, Masson staining, scanning electron microscope (SEM), and mechanical test. Biocompatibil ity wasdetected using cell adhesion test, MTT assay, and subcutaneously embedding test. Ten SD rats were divided into 2 groups (n=5). In experimental group, acellular vascular matrix preserved by the combination of repeated frozen/thawing, ultrahigh pressure treatment and chemical detergent was subcutaneously embedded; and in control group, acellular vascular matrix preserved only by repeated frozen/thawing and ultrahigh pressure treatment was subcutaneously embedded. Results HE staining and Masson staining revealed that no nucleus was detected in the acellular vascular matrix. SEM demonstrated that a lot of collagen fibers were preserved which were beneficial for cell adhesion. Fluorescence staining and DNA remain test showed that the cells were removed completely. There was no significant difference in stress and strain under the maximum load between before and after treatment. Mechanical test revealed that the acellular vascular matrix reserved mechanical properties of the raw caprine carotids. Cell adhesion test and MTT assay confirmed that cytotoxicity was grade 0-1, and the acellular vascular matrix had good compatibil ity to endothel ial cells. After subcutaneously embedding for 8 weeks, negl igible lymphocyte infiltration was observed in experimental group but obvious lymphocyte infiltration in control group. Conclusion The acellular vascular matrix, which is well-preserved by the combination of repeated frozen/thawing, ultrahigh pressure treatment, and chemical detergent, is an ideal scaffold for tissue engineered blood vessel.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • PREPARATION OF SELECTIVELY DECELLULAR XENOSKIN AND ITS BIOCOMPATIBILITY

    Objective To prepare and study the biocompatibil ity of selectively decellular xenoskin which has the character of the lower antigen, continuous epidermis, and the dermal matrix without any cellular components. Methods The porcine skin was treated with glutaraldehyde solution, trypsin, and detergent solution TritonX-100 to prepare the selectivelydecellular xenoskin. The cytotoxicity was tested according to GB/T16886.5-2003 biological evaluation of medical devices for in vitro cytotoxicity, and the levels of cytotoxicity were evaluated with the United States Pharmacopeia. Subdermal implantation was tested according to GB/T16886.6-1997 biological evaluation of medical devices for local effects after implantation. Seventytwo mature Wistar rats were randomly assigned to groups A, B, and C (n=24). Three kinds of materials were implanted into subcutaneous of rats back. Selectively decellular xenoskin was transplanted into group A, fresh porcine skin was transplanted into group B, and allogeneic skin was transplanted into group C. The samples were collected to make the observation of gross and histology after 1, 2, 4, 8, 12, and 16 weeks. Results The cytotoxicity was proved to be first grade by biocompatibil ity test. The gross and histological observation of subdermal implantation: after implantation, the most severe inflammatory reactions were seen in group B which dispersion was very slow. Inflammatory reactions in groups A and C alleviated gradually. In groups A and C, there was an increased collagen fiber density and angiogenesis at late stage; the transplanted skin was gradually degraded and absorbed. In group B, no obvious degradation and absorption were observed. Conclusion Selectively decellular xenoskin, prepared with glutaraldehyde solution, trypsin, and detergent solution, possesses characteristics of integral skin structure andexcellent biocompatibil ity, so it can be used as a new type substitute to repair the burn wound.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON BIOCOMPATIBILITY OF VASCULAR TISSUE ENGINEERING SCAFFOLD OF ε-CAPROLACTONE AND L-LACTIDE

    Objective To explore the method of preparing the electrospinning of synthesized triblock copolymers of ε-caprolactone and L-lactide (PCLA) for the biodegradable vascular tissue engineering scaffold and to investigateits biocompatibil ity in vitro. Methods The biodegradable vascular tissue engineering scaffold was made by the electrospinning process of PCLA. A series of biocompatibil ity tests were performed. Cytotoxicity test: the L929 cells were cultured in 96-wellflat-bottomed plates with extraction media of PCLA in the experimental group and with the complete DMEM in control group, and MTT method was used to detect absorbance (A) value (570 nm) every day after culture. Acute general toxicity test: the extraction media and sal ine were injected into the mice’s abdominal cavity of experimental and control groups, respectively, and the toxicity effects on the mice were observed within 72 hours. Hemolysis test: anticoagulated blood of rabbit was added into the extracting solution, sal ine, and distilled water in 3 groups, and MTT method was used to detect A value in 3 groups. Cell attachment test: the L929 cells were seeded on the PCLA material and scanning electron microscope (SEM) observation was performed 4 hours and 3 days after culture. Subcutaneous implantation test: the PCLA material was implanted subcutaneously in rats and the histology observation was performed at 1 and 8 weeks. Results Scaffolds had the characteristics of white color, uniform texture, good elasticity, and tenacity. The SEM showed that the PCLA ultrafine fibers had a smooth surface and proper porosity; the fiber diameter was 1-5 μm and the pore diameter was in the range of 10-30 μm. MTT detection suggested that there was no significant difference in A value among 3 groups every day after culturing (P gt; 0.05). The mice in 2 groups were in good physical condition and had no respiratory depression, paralysis, convulsion, and death. The hemolysis rate was 1.18% and was lower than the normal level (5%). The SEM showed a large number of attached L929 cells were visible on the surface of the PCLA material at 4 hours after implantation and the cells grew well after 3 days. The PCLA material was infiltrated by the inflammatory cells after 1 week. The inflammatory cells reduced significantly and the fiber began abruption after 8 weeks. Conclusion The biodegradable vascular tissue engineering scaffold material made by the electrospinning process of PCLA has good microstructure without cytotoxicity and has good biocompatibil ity. It can be used as an ideal scaffold for vascular tissue engineering.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF SCAFFOLD MATERIALS IN SKELETAL MUSCLE TISSUE ENGINEERING

    Objective To review the current researches of scaffold materials for skeletal muscle tissue engineering, to predict the development trend of scaffold materials in skeletal muscle tissue engineering in future. Methods The related l iterature on skeletal muscle tissue engineering, involving categories and properties of scaffold materials, preparative techniqueand biocompatibil ity, was summarized and analyzed. Results Various scaffold materials were used in skeletal muscle tissue engineering, including inorganic biomaterials, biodegradable polymers, natural biomaterial, and biomedical composites. According to different needs of the research, various scaffolds were prepared due to different biomaterials, preparative techniques, and surface modifications. Conclusion The development trend and perspective of skeletal muscle tissue engineering are the use of composite materials, and the preparation of composite scaffolds and surface modification according to the specific functions of scaffolds.

    Release date:2016-09-01 09:04 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content