west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Bone morphogenetic protein 7" 4 results
  • PROMOTION EFFECT OF NUCLEAR FACTOR KAPPA B p65 ON EARLY FRACTURE HEALING OF RAT RADIUS BY ELEVATING PROSTAGLANDINS E2 PRODUCTION AND REGULATING INHIBITOR OF DNA BINDING 2 PROTEIN EXPRESSION

    Objective Series of compl icated molecule signal pathway are involved in the bone regeneration. To explore the possibil ity of nuclear factore kappa B (NF-κB) which is taken as the “key activation” during the fracture healing and provide the laboratory evidence for the gene therapy of nonunion or delayed union of fractures. Methods Thirtythree adult male Wistar rats (weighing 180-220 g) were selected and divided randomly into 4 groups: group A (the control group, n=3), the rigth lower segments of radius were injected with normal sal ine 0.3 mL for 7 days, once per day; group B (Bay 11-7082 injection group, n=6), the middle and distal radius were injected with normal sal ine containing 50 μmol/L NF- κB inhibitor Bay 11-7082 0.3 mL for 7 days, once per day; group C (fracture group, n=12), the right middle and distal radius were cut by a sharp scissors to form per fracture model; and group D (Bay 11-7082 treatment group, n=12), based on group C, 0.3 mL of 50 μmol/L Bay 11-7082 were injected into the fracture site for 7 days, once per day. The callus tissues were harvested at 3, 7, 14, and 28 days after fracture for Western blot analysis, alkal ine phosphatase (ALP) activity assessment, prostaglandins E2 (PGE2) production assay, and histological observation. Results The rats of all groups were survivaltill the experiment completion. At 3 and 7 days after injection, there was no significant difference in the ALP activity and PGE2 production between group B and group A (P gt; 0.05); but group C was significantly higher than group A (P lt; 0.01) and group D was significantly lower than group A (P lt; 0.01). The expressions of NF-κB p65, bone morphogenetic protein 7 (BMP-7), and inhibitor of DNA binding 2 (Id2) were observed at fracture sites of 4 groups. There was no significant difference in the expressions of NF-κB p65, BMP-7, and Id2 between group B and group A (P gt; 0.05); the expressions of NF-κB p65 and BMP-7 were significantly higher and the expression of Id2 was significantly lower in group C than group A (P lt; 0.01); and the expressions of NF-κB p65 and BMP-7 were significantly lower and the expression of Id2 was significantly higher in group D than group A (P lt; 0.01). The histological observation showed that a lot of osseous callus formed in group C at 14 and 28 days, but osseous callus just began to form in group D at 28 days. Conclusion NF-κB p65 can facil itate early fracture heal ing of rat radius by elevating the PGE2 production and regulating BMP-7 and Id2 expression.

    Release date:2016-08-31 05:44 Export PDF Favorites Scan
  • CONSTRUCTION OF RECOMBINANT ADENOVIRUS BEARING HUMAN TRANSFORMING GROWTH FACTOR β1 AND BONE MORPHOGENETIC PROTEIN 7 GENES AND ITS DIRECTIONAL INDUCEMENT EFFECT ON MARROW STROMAL STEM CELLS

    Objective To construct the recombinant adenovirus bearing human transforming growth factor β1(TGF-β1) and bone morphogenetic protein 7 (BMP-7) genes, and investigate its co-expression in the marrow stromalstemcells (MSCs) and bioactivity effect. Methods Using the replication defective adenovirus AdEasy as a carrier, MSCs were infected by the high-titer-level recombinant adenovirus taking TGF-β1 and BMP-7 genes. Immunocytochemistry, in situ hybridization,reverse transcription-polymerase chain reaction (RT-PCR), and hexuronic acid level test were used to detect the coexpression of the exogenous genes and to analyze their effect transfection on directive differentiation of MSCs. Results The immunocytochemistry staining showed that the brown coarse grains were situated in the cytoplasm of the most MSCs 72 h after infection. Procollagen ⅡmRNA in the cells was detected by the in situ hybridization, and the content of hexuronic acid in the culture mediumwas significantly increased 10 days after infection compared with the level before infecton (Plt;0.01). Conclusion The recombinant adenovirus bearing human TGF-β1 and BMP-7 genes can be constructed, and the exogenous gene can be coexpressed in MSCs, which may offer a novel approach to thelocal combination gene therapy for repairing joint cartilage defects.

    Release date:2016-09-01 09:25 Export PDF Favorites Scan
  • Domestic porous tantalum loaded with bone morphogenetic 7 in repairing osteochondral defect in rabbits

    ObjectiveTo investigate the ability to repair osteochondral defect and the biocompatibility of porous tantalum loaded with bone morphogenetic protein 7 (BMP-7) by observing the effect of porous tantalum loaded with BMP-7 in repairing articular cartilage and subchondral bone defect. MethodsThe cartilage defect models of medial femoral condyle were established in 48 New Zealand white rabbits, which were randomly divided into 3 groups (n=16): porous tantalum material+BMP-7 (group A) and porous tantalum material (group B) were implanted into the right side of the medial femoral condyle; and no material was implanted as control (group C). The general condition of animals was observed after operation, then the specimens were harvested for gross observation, histological observation, and scanning electron microscope (SEM) observation at 4, 8, and 16 weeks after implantation, micro-CT was used to observe the cartilage and bone ingrowth and bone formation around porous tantalum at 16 weeks after implantation. ResultsNo animal died after operation and wound healed well. Gross observation showed that defects of groups A and B were covered with new cartilage with time, but earlier new cartilage formation and better repair were observed in group A than group B, no repair occurred at the site of bone defects, and defect surface was filled with fibrous tissue in group C. Cartilage repair gross score of group A was significantly higher than that of group B at 8 and 16 weeks (P < 0.05) but no significant difference was found between groups A and B at 4 weeks (P>0.05). SEM observation showed that the number of new cartilage and osteoblasts increased gradually with time, and the implanted material was gradually covered with the extracellular matrix, and the new bone tissue grew into the pores of the material; the neonatal bone tissue and extracellular matrix secretion of group A were significantly more than those of group B. The toluidine blue staining results showed that new cartilage and bone tissue gradually increased in the porous tantalum interface, and new bone trabecula formed and grew in the pores, the bone and the porous tantalum contact tended to close, and cartilage defect was gradually covered with cartilage like tissue, cartilage tissue and porous tantalum combined more closely in groups A and B at 4, 8 and 16 weeks. New cartilage and bone tissue of group A was more than that of group B. Micro-CT analysis indicated that the bone mineral density, trabecular thickness, trabecular number, and bone volume fraction of group A were significantly higher than those of group B at 16 weeks (P < 0.05), but the trabecular bone space was significantly lower than that of group B (P < 0.05). ConclusionThe domestic porous tantalum has good biocompatibility, domestic porous tantalum loaded with BMP-7 can promote the formation of a stable connection with the host and has a good effect on cartilage and subchondral bone defect repair.

    Release date: Export PDF Favorites Scan
  • Effect of bone morphogenetic protein 7/poly (lactide-co-glycolide) microspheres on the in vitro proliferation and chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells

    ObjectiveTo evaluate the effect of bone morphogenetic protein 7 (BMP-7)/poly (lactide-co-glycolide) (PLGA) microspheres on in vitro proliferation and chondrogenic differentiation of rabbit bone marrow mesenchymal stem cells (BMSCs).MethodsBMP-7/PLGA microspheres were fabricated by double emulsion-drying in liquid method. After mixing BMP-7/PLGA microspheres with the chondrogenic differentiation medium, the supernatant was collected on the 1st, 3rd, 7th, 14th, and 21st day as the releasing solution. The BMSCs were isolated from the bilateral femurs and tibias of 3-5 days old New Zealand rabbits, and the 3rd generation BMSCs were divided into 2 groups: microspheres group and control group. The BMSCs in microspheres group were cultured by 200 μL BMP-7/PLGA microspheres releasing solution in the process of changing liquid every 2-3 days, while in control group were cultured by chondrogenic medium. The cell proliferation (by MTT assay) and the glycosaminoglycan (GAG) contents (by Alician blue staining) were detected after chondrogenic cultured for 1, 3, 7, 14, and 21 days. The chondrogenic differentiation of BMSCs was observed by safranine O staining, toluidine blue staining, and collagen type Ⅱ immunohistochemistry staining at 21 days.ResultsMTT test showed that BMSCs proliferated rapidly in 2 groups at 1, 3, and 7 days; after 7 days, the proliferation of BMSCs in the control group was slow and the BMSCs in microspheres group continued to proliferate rapidly. There was no significant difference of the absorbance (A) value at 1, 3, and 7 days between 2 groups (P>0.05), but theA value at 14 and 21 days in microspheres group was significantly higher than that in control group (P<0.05). Compared with control group at 21 days, in microsphere group, almost all nuclei were dyed bright red by safranine O staining, almost all the nuclei appeared metachromatic purple red by toluidine blue staining, and the most nuclei were yellow or brown by immunohistochemical staining of collagen type Ⅱ. Alcian blue staining showed that the content of GAG in 2 groups increased continuously at different time points; after 7 days, the increasing trend of the control group was slow and the microspheres group continued hypersecretion. There was no significant difference of the GAG content at 1, 3, and 7 days between 2 groups (P>0.05), but the GAG content at 14 and 21 days in microspheres group was significantly higher than that in control group (P<0.05).ConclusionBMP-7/PLGA microspheres prepared by double emulsion-drying in liquid method in vitro can promote proliferation and chondrogenic differentiation of rabbit BMSCs.

    Release date:2018-04-03 09:11 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content