west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Brain derived neurotrophic factor" 3 results
  • Immunohistological observation on rabbits′retinae after subreinal implantation with inactive chips

    Objective To observe the expression of related proteins of retina after subretinal implantation with inactive chips.Methods A total of 27 healthy adult New Zealand white rabbits were randomly divided into three groups: operation group (12 rabbits) in which the rabbits were implanted with inactive chips into the interspace beneath retina;shamoperation group (12 rabbits) in which the rabbits were implanted with inactive chips into the interspace beneath retina which was taken out immediately;the control group (3 rabbits). Animals were sacrified for immunohistological study 7,15,30 and 60 days after surgery.The rabbits in control group group were sacrified for immunohistological study after bred for 30 days.The expressions of glial fibrillary acidic protein (GFAP) and brain derived neurotrophic facor (BDNF) were observed.Results In operation group, the outer nulear layer of retina thinned, and the cells in the inner nulear layer was disorganized 7,15,and 30 days after the surgery;glial cells proliferated 60 days after surgery; the positive expression of BDNF and GFAP was more than that in the shamoperation and control group.In shamoperation group, the positive expression of BDNF and GFAP was more than that in the control group.No obvious difference of expression of BDNF and GFAP between each time point groups was found.Conclusions The expression of neroprotective related proteins increased after subretinal implantation with inactive chips suggests that limited neuroprotective effects might be led by the implantation.

    Release date:2016-09-02 05:42 Export PDF Favorites Scan
  • EFFECT OF NEUROTROPHIC FACTORS AND GROWTH FACTORS ON ADULT HUMAN RETINAL GANGLION CELLS IN VITRO

    Objective To study the effects of several neurotrophic factors and growth factors on the survival of human retinal ganglion cells(RGC)in vitro. Methods RGC were isolated from donor eyes and cultured.RGC in cell culture were identified by morphologic criteria and immunocytochemical staining.Various neurotrophic factors and growth factors were added individually to the cultures.Numbers of RGC in wells in which these agents had been added were compared with those from control wells(cultures without supplements). Results No or very few RGC were present in cell cultures containing medium without supplements or those supplemented with neurotrophin-3(NT-3),nerve growth factor (NGF),epidermal growth factor(EGF)amd plateletderived growth factor(PDGF).Numbers of RGC(per 10 fields)in cell cultures containing brain derived neurotrophic factor(BDNF),ciliary neurotrophic factor(CNTF),neurotrophin-4/5(NT-4/5)and basic fibroblast growth factor(bFGF)wer 4.08,1.23,2.63 and 2.65,respectively,significantly more than found in the control cultures. Conclusions BDNF,NT-4/5,bFGF,CNTF improve survival of human RGC in vitro,while NGF,NT-3,EGF and PDGF do not. (Chin J Ocul Fundus Dis, 1999, 15: 149-152)

    Release date:2016-09-02 06:07 Export PDF Favorites Scan
  • EFFECT OF CARBOXYMETHYLATED CHITOSAN ON APOPTOSIS AND EXPRESSION OF BRAIN DERIVED NEUROTROPHIC FACTOR AND GLIAL CELL LINE DERIVED NEUROTROPHIC FACTOR IN OXIDATIVE STRESS INDUCED Schwann CELLS IN VITRO

    ObjectiveTo investigate the protective effects of carboxymethylated chitosan (CMCS) on oxidative stress induced apoptosis of Schwann cells (SCs), and the expressions of brain derived neurotrophic factor (BDNF) and gl ial cell line derived neurotrophic factor (GDNF) in oxidative stress induced SCs. MethodsTwenty-four 3-5 days old Sprague Dawley rats (weighing 25-30 g, male or female) were involved in this study. The bilateral sciatic nerves of rats were harvested and SCs were isolated and cultured in vitro. The purity of SCs was identified by immunofluorescence staining of S-100. SCs were treated with different concentrations of hydrogen peroxide (H2O2, 0.01, 0.10, and 1.00 mmol/L) for 3, 6, 12, and 24 hours to establ ish the apoptotic model. The cell counting kit 8 (CCK-8) and flow cytometry analysis were used to detect the cell viabil ity and apoptosis induced by H2O2, and the optimal concentration and time for the apoptotic model of SCs were determined. The 2nd passage SCs were divided into 5 groups and were treated with PBS (control), with 1.00 mmol/L H2O2, with 1.00 mmol/L H2O2+50 μg/mL CMCS, with 1.00 mmol/L H2O2+100 μg/mL CMCS, and with 1.00 mmol/L H2O2+200 μg/mL CMCS, respectively. After cultured for 24 hours, the cell viabil ity was assessed by CCK-8, cell apoptosis was detected by flow cytometry analysis, the expressions of mRNA and protein of BDNF and GDNF were detected by real-time quantitative PCR and Western blot. ResultsThe immunofluorescence staining of S-100 indicated the positive rate was more than 95%. CCK-8 and flow cytometry results showed that H2O2 can inhibit the proliferation of SCs and induce the SCs apoptosis with dose dependent manner, the effect was the most significant at 1.00 mmol/L H2O2 for 24 hours; after addition of CMCS, SCs exhibited the increased proliferation and decreased apoptosis in a dose dependent manner. Real-time quantitative PCR and Western blot analysis showed that 1.00 mmol/L H2O2 can significantly inhibit BDNF and GDNF expression in SCs when compared with control group (P<0.05), 50-200 μg/mL CMCS can reverse the oxidative stress-induced BDNF and GDNF expression in SCs in a dose dependent manner, showing significant difference compared with control group and 1.00 mmol/L H2O2 induced group (P<0.05). There were significant differences among different CMCS treated groups (P<0.05). ConclusionCMCS has the protective stress on oxidative stress induced apoptosis of SCs, and may promote the BDNF and GDNF expressions of neurotrophic factors in oxidative stress induced SCs.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content