Objective To evaluate the biomechanical stability of a newly-designed Y type pedicle screw (YPS) in osteoporotic synthetic bone. Methods The osteoporotic synthetic bone were randomly divided into 3 groups (n=20). A pilot hole, 3.0 mm in diameter and 30.0 mm in deep, was prepared in these bones with the same method. The YPS, expansive pedicle screw (EPS), and bone cement-injectable cannulated pedicle screw (CICPS) were inserted into these synthetic bone through the pilot hole prepared. X-ray film examination was performed after 12 hours; the biomechanical stability of YPS, EPS, and CICPS groups was tested by the universal testing machine (E10000). The test items included the maximum axial pullout force, the maximum running torque, and the maximum periodical anti-bending. Results X-ray examination showed that in YPS group, the main screw and the core pin were wrapped around the polyurethane material, the core pin was formed from the lower 1/3 of the main screw and formed an angle of 15° with the main screw, and the lowest point of the inserted middle core pin was positioned at the same level with the main screw; in EPS group, the tip of EPS expanded markedly and formed a claw-like structure; in CICPS group, the bone cement was mainly distributed in the front of the screw and was dispersed in the trabecular bone to form a stable screw-bone cement-trabecular complex. The maximum axial pullout force of YPS, EPS, and CICPS groups was (98.43±8.26), (77.41±11.41), and (186.43±23.23) N, respectively; the maximum running torque was (1.42±0.33), (0.96±0.37), and (2.27±0.39) N/m, respectively; and the maximum periodical anti-bending was (67.49±3.02), (66.03±2.88), and (143.48±4.73) N, respectively. The above indexes in CICPS group were significantly higher than those in YPS group and EPS group (P<0.05); the maximum axial pullout force and the maximum running torque in YPS group were significantly higher than those in EPS group (P<0.05), but there was no significant difference in the maximum periodical anti-bending between YPS group and EPS group (P>0.05). Conclusion Compared with EPS, YPS can effectively enhance the maximum axial pullout force and maximum rotation force in the module, which provides a new idea for the design of screws and the choice of different fixation methods under the condition of osteoporosis.
Objective To explore the therapeutic effect of basic fibroblast growth factor (bFGF) on spinal cord injury (SCI) in rats and the influence of Notch/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Methods A total of 40 10-week-old male Sprague Dawley (SD) rats were selected to establish T10-segment SCI model by a free falling object. Among them, 32 successful models were randomly divided into model group and bFGF group, with 16 in each group. Another 16 SD rats were selected as sham-operation group, with only T10 processes, dura mater, and spinal cord exposed. After modeling, the rats in bFGF group were intraperitoneally injected with 100 μg/kg bFGF (once a day for 28 days), and the rats in model group and sham-operation group were injected with normal saline in the same way. The survival of rats in each group were observed after modeling. Basso-Beattie-Bresnahan (BBB) scores were performed before modeling and at immediate, 14 days, and 28 days after modeling to evaluate the functional recovery of hind limbs. Then, the spinal cord tissue at the site of injury was taken at 28 days and stained with HE, Nissl, and propidium iodide (PI) to observe the pathological changes, neuronal survival (number of Nissl bodies) and apoptosis (number of PI red stained cells) of the spinal cord tissue; immunohistochemical staining and ELISA were used to detect the levels of astrocyte activation markers [glial fibrillary acidic protein (GFAP)] and inflammatory factors [interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), interferon γ (IFN-γ)] in tissues, respectively. Western blot was used to detect the expressions of Notch/STAT3 signaling pathway related proteins [Notch, STAT3, phosphoryl-STAT3 (p-STAT3), bone morphogenetic protein 2 (BMP-2)] in tissues. Results All rats survived until the experiment was completed. At immediate after modeling, the BBB scores in model group and bFGF group significantly decreased when compared to sham-operation group (P<0.05). At 14 and 28 days after modeling, the BBB scores in model group significantly decreased when compared to sham-operation group (P<0.05); the bFGF group showed an increase compared to model group (P<0.05). Compared with before modeling, the BBB scores of model group and bFGF group decreased at immediate after modeling, and gradually increased at 14 and 28 days, the differences between different time points were significant (P<0.05). The structure of spinal cord tissue in sham-operation group was normal; in model group, there were more necrotic lesions in the spinal cord tissue and fewer Nissl bodies with normal structures; the number of necrotic lesions in the spinal cord tissue of the bFGF group significantly reduced compared to the model group, and some normally structured Nissl bodies were visible. Compared with sham-operation group, the number of Nissl bodies in spinal cord tissue significantly decreased, the number of PI red stained cells, GFAP, IL-1β, TNF-α, IFN-γ, Notch, p-STAT3 /STAT3, BMP-2 protein expression levels significantly increased in model group (P<0.05). The above indexes in bFGF group significantly improved when compared with model group (P<0.05). Conclusion bFGF can improve motor function and pathological injury repair of spinal cord tissue in SCI rats, improve neuronal survival, and inhibit neuronal apoptosis, excessive activation of astrocytes in spinal cord tissue and inflammatory response, the mechanism of which may be related to the decreased activity of Notch/STAT3 signaling pathway.