west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "CHEN Hongyu" 3 results
  • Multi-scale feature extraction and classification of motor imagery electroencephalography based on time series data enhancement

    The brain-computer interface (BCI) based on motor imagery electroencephalography (MI-EEG) enables direct information interaction between the human brain and external devices. In this paper, a multi-scale EEG feature extraction convolutional neural network model based on time series data enhancement is proposed for decoding MI-EEG signals. First, an EEG signals augmentation method was proposed that could increase the information content of training samples without changing the length of the time series, while retaining its original features completely. Then, multiple holistic and detailed features of the EEG data were adaptively extracted by multi-scale convolution module, and the features were fused and filtered by parallel residual module and channel attention. Finally, classification results were output by a fully connected network. The application experimental results on the BCI Competition IV 2a and 2b datasets showed that the proposed model achieved an average classification accuracy of 91.87% and 87.85% for the motor imagery task, respectively, which had high accuracy and strong robustness compared with existing baseline models. The proposed model does not require complex signals pre-processing operations and has the advantage of multi-scale feature extraction, which has high practical application value.

    Release date: Export PDF Favorites Scan
  • Motor imagery electroencephalogram classification based on sparse spatiotemporal decomposition and channel attention

    Motor imagery electroencephalogram (EEG) signals are non-stationary time series with a low signal-to-noise ratio. Therefore, the single-channel EEG analysis method is difficult to effectively describe the interaction characteristics between multi-channel signals. This paper proposed a deep learning network model based on the multi-channel attention mechanism. First, we performed time-frequency sparse decomposition on the pre-processed data, which enhanced the difference of time-frequency characteristics of EEG signals. Then we used the attention module to map the data in time and space so that the model could make full use of the data characteristics of different channels of EEG signals. Finally, the improved time-convolution network (TCN) was used for feature fusion and classification. The BCI competition IV-2a data set was used to verify the proposed algorithm. The experimental results showed that the proposed algorithm could effectively improve the classification accuracy of motor imagination EEG signals, which achieved an average accuracy of 83.03% for 9 subjects. Compared with the existing methods, the classification accuracy of EEG signals was improved. With the enhanced difference features between different motor imagery EEG data, the proposed method is important for the study of improving classifier performance.

    Release date: Export PDF Favorites Scan
  • Design of flexible wearable sensing systems

    The aging population and the increasing prevalence of chronic diseases in the elderly have brought a significant economic burden to families and society. The non-invasive wearable sensing system can continuously and real-time monitor important physiological signs of the human body and evaluate health status. In addition, it can provide efficient and convenient information feedback, thereby reducing the health risks caused by chronic diseases in the elderly. A wearable system for detecting physiological and behavioral signals was developed in this study. We explored the design of flexible wearable sensing technology and its application in sensing systems. The wearable system included smart hats, smart clothes, smart gloves, and smart insoles, achieving long-term continuous monitoring of physiological and motion signals. The performance of the system was verified, and the new sensing system was compared with commercial equipment. The evaluation results demonstrated that the proposed system presented a comparable performance with the existing system. In summary, the proposed flexible sensor system provides an accurate, detachable, expandable, user-friendly and comfortable solution for physiological and motion signal monitoring. It is expected to be used in remote healthcare monitoring and provide personalized information monitoring, disease prediction, and diagnosis for doctors/patients.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content