west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "CHEN Jifeng" 4 results
  • EFFECT OF DIFFERENT NUMBER OF BONE MARROW MESENCHYMAL STEM CELLS ON GROWTH OF RAT DORSAL ROOT GANGLIA IN VITRO

    Objective Bone marrow mesenchymal stem cells (BMSCs), as replacement cells of Schwann cells, can increase the effect of peripheral nerve repair. However, it has not yet reached any agreement to add the appropriate number of seeded cells in nerve scaffold. To investigate the effect of different number of BMSCs on the growth of rat dorsal root gangl ia(DRG). Methods Three 4-week-old Sprague Dawley (SD) rats (weighing 80-100 g) were selected to isolate BMSCs, whichwere cultured in vitro. Three 1- to 2-day-old SD rats (weighing 4-6 g) were selected to prepare DRG. BMSCs at passage 3 were used to prepare BMSCs-fibrin glue complex. According to different number of BMSCs at passage 3 in fibrin glue, experiment was divided into group A (1 × 103), group B (1 × 104), group C (1 × 105), and group D (0, blank control), and BMSCs were cocultured with rat DRG. The axon length of DRG, Schwann cell migration distance, and axon area index were quantitatively evaluated by morphology, neurofilament 200, and Schwann cells S-100 immunofluorescence staining after cultured for 48 hours. Results Some long cell processes formed in BMSCs at 48 hours; migration of Schwann cells and axons growth from the DRG were observed, growing in every direction. BMSCs in fibrin glue had the biological activity and could effect DRG growth. The axon length of DRG and Schwann cell migration distance in groups A, B, and C were significantly greater than those in group D (P lt; 0.05). The axon length of DRG and Schwann cell migration distance in group C were significantly less than those in group B (P lt; 0.05), but there was no significant difference between group A and group C, and between group A and group B (P gt; 0.05). The axon area index in groups A and B was significantly greater than that in group D (P lt; 0.05), but there was no significant difference between group C and group D (P gt; 0.05); there was no significant difference in groups A, B, and C (P gt; 0.05). Conclusion In vitro study on DRG culture experiments is an ideal objective neural model of nerve regeneration. The effect of different number of BMSCs in fibrin glue on the growth of DRG has dose-effect relationship. It can provide a theoretical basis for the appropriate choice of the BMSCs number for tissue engineered nerve.

    Release date:2016-08-31 05:42 Export PDF Favorites Scan
  • CONSTRUCTION OF RECOMBINANT ADENOVIRUS VECTOR PADXSI-GREEN FLUORESCENT PROTEINHOMOSAPIENS NEL-LIKE 1 AND TRANSFECTED INTO RAT BONE MARROW MESENCHYMAL STEM CELLS IN VITRO

    Objective To construct a recombinant adenovirus vector pAdxsi-GFP-NELL1 that co-expressing green fluorescent protein (GFP) and homo sapiens NEL-l ike 1 (NELL1) protein (a protein bly expressed in neural tissue encoding epidermal growth factor l ike domain), to observe its expression by transfecting the recombinant adenovirus into rat bone marrow mesenchymal stem cells (BMSCs) so as to lay a foundation for further study on osteogenesis of NELL1 protein. Methods From pcDNA3.1-NELL1, NELL1 gene sequence was obtained, then NELL1 gene was subcloned into pShuttle-GFP-CMV (-)TEMP vector which was subsequently digested with enzyme and insterted into pAdxsi vector to package the recombinant adenovirus vector (pAdxsi-GFP-NELL1). After verified by enzyme cutting and gel electrophoresis, pAdxsi-GFPNELL1 was ampl ified in HEK293 cells and purified by CsCl2 gradient purification, titrated using 50% tissue culture infective dose (TCID50) assay. The rat BMSCs were cultured and identified by flow cytometry and directional induction, then were infected with adenoviruses (pAdxsi-GFP-NELL1 and pAdxsi-GFP). NELL1 expression was verified by RT-PCR and immunofluorescence; GFP gene expression was verified by the intensity of green fluorescence under fluorescence microscope. Cell counting kit-8 (CCK-8) was used for investigate the influence of vectors on the prol iferation of rat BMSCs. Results Recombinant adenoviral vector pAdxsi-GFP-NELL1, which encodes a fusion protein of human NELL1, was successfully constructed and ampl ified with titer of 1 × 1011 pfu/mL. The primary BMSCs were cultured and identified by flow cytometric analysis, osteogenic and adipogenic induction, then were used for adenoviral transfection efficiency and cell toxicity tests. An multipl icity of infection of 200 pfu/cell produced optimal effects in transfer efficiency without excessive cell death in vitro. Three days after transfection with 200 pfu/cell pAdxsi-GFP-NELL1 or pAdxsi-GFP, over 60% BMSCs showed green fluorescent by fluorescence microscopy. Imunofluorescence with NELL1 antibody also revealed high level expression of human NELL1 protein in red fluorescent in these GFP expressing cells. RT-PCR analysis confirmed that the exogenous expression of NELL1 upon transfection with pAdxsi-GFPNELL1 at 200 pfu/cell, whereas NELL1 remained undetectable in Ad-GFP-transfected rat BMSCs. The prol iferative property of primary rat BMSCs after adenoviral NELL1 transfection was assayed by CCK-8 in growth medium. Growth curve demonstratedno significant difference among BMSCs transfected with pAdxsi-GFP-NELL1, pAdxsi-GFP, and no treatment control at 7 days (P gt; 0.05). Conclusion Recombinant adenovirus vector pAdxsi-GFP-NELL1 can steady expressing both GFP and NELL1 protein after being transfected into rat BMSCs. It provides a useful tool to trace the expression of NELL1 and investigate its function in vitro and in vivo.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • EXTRACTION TECHNIQUES AND BIOCOMPATIBILITY EVALUATIONS OF NATURALLY DERIVED NERVE EXTRACELLULAR MATRIX

    Objective Native extracellular matrix (ECM) is comprised of a complex network of structural and regulatory proteins that are arrayed into a tissue-specific, biomechanically optimal, fibrous matrix. The multifunctional nature of the native ECM will need to be considered in the design and fabrication of tissue engineering scaffolds. To investigate the extraction techniques of naturally derived nerve ECM and the feasibil ity of nerve tissue engineering scaffold. Methods Ten fresh canine sciatic nerves were harvested; nerve ECM material was prepared by hypotonic freeze-thawing, mechanicalgrinding, and differential centrifugation. The ECM was observed by scanning electron microscope. Immunofluorescencestaining was performed to detect specific ECM proteins including collagen type I, laminin, and fibronectin. Total collagen and glycosaminoglycan (GAG) contents were assessed using biochemical assays. The degree of decellularization was evaluated with staining for nuclei using Hoechst33258. The dorsal root gangl ion and Schwann cells of rats were respectively seeded onto nerve tissue-specific ECM films. The biocompatibil ity was observed by specific antibodies for cell markers. Results Scanning electron microscope analysis revealed that nerve-derived ECM consisted of a nanofibrous structure, which diameter was 30-130 nm. Immunofluorescence staining confirmed that the nerve-derived ECM was made up of collagen type I, laminin, and fibronectin. The histological staining showed that the staining results of sirius red, Safranin O, and toluidine blue were positive. Hoechst33258 staining showed no DNA within the decellularized ECM. Those ECM films had good biocompatibil ity for dorsal root gangl ion and Schwann cells. The cotents of total collagen and GAG in the nerve-derived ECM were (114.88 ± 13.33) μg/ mg and (17.52 ± 2.34) μg/mg, showing significant difference in the content of total collagen (P lt; 0.01) and no significant difference in the content of GAG (P gt; 0.05) when compared with the contents of normal nerve tissue [(54.07 ± 5.06) μg/mg and (25.25 ± 1.56) μg/mg)]. The results of immunofluorescence staining were positive for neurofilament 200 after 7 days and for S100 after 2 days. Conclusion Nerve-derived ECM is rich in collagen type I, laminin, and fibronectin and has good biocompatibil ity, so it can be used as a nerve tissue engineering scaffold.

    Release date:2016-08-31 05:49 Export PDF Favorites Scan
  • FUNCTIONAL EVALUATION OF CHEMICALLY EXTRACTED ACELLULAR NERVE ALLOGRAFT SUPPLEMENT WITH DIFFERENT TISSUES OF SCHWANN CELLS FOR PERIPHERAL NERVE REGENERATION

    Objective To construct chemically extracted acellular nerve allograft (CEANA) with Schwann cells (SCs) from different tissues and to compare the effect of repairing peripheral nerve defect. Methods Bone marrow mesenchymal stem cells (BMSCs) and adi pose-derived stem cells (ADSCs) were isolated and cultured from 3 4-week-old SD mice with weighing 80-120 g. BMSCs and ADSCs were induced to differentiated MSC (dMSC) and differentiated ADSC (dADSC) in vitro.dMSC and dADSC were identified by p75 protein and gl ial fibrillary acidic protein (GFAP). SCs were isolated and culturedfrom 10 3-day-old SD mice with weighing 6-8 g. CEANA were made from bilateral sciatic nerves of 20 adult Wistar mice with weighing 200-250 g. Forty adult SD mice were made the model of left sciatic nerve defect (15 mm) and divided into 5 groups (n=8 per group) according to CEANA with different sources of SCs: autografting (group A), acellular grafting with SCs (5 × 105) (group B), acellular grafting with dMSCs (5 × 105) (group C), acellular grafting with dADSCs (5 × 105) (group D), and acellular grafting alone (group E). Motor and sensory nerve recovery was assessed by Von Frey and tension of the triceps surae muscle testing 12 weeks after operation. Then wet weight recovery ratio of triceps surae muscles was measured and histomorphometric assessment of nerve grafts was evaluated. Results BMSCs and ADSCs did not express antigens CD34 and CD45, and expressed antigen CD90. BMSCs and ADSC were differentiated into similar morphous of SCs and confirmed by the detection of SCs-specific cellsurface markers. The mean 50% withdrawal threshold in groups A, B, C, D, and E was (13.8 ± 2.3), (15.4 ± 6.5), (16.9 ± 5.3), (16.3 ± 3.5), and (20.0 ± 5.3) g, showing significant difference between group A and group E (P lt; 0.01). The recovery of tension of the triceps surae muscle in groups A, B, C, D, and E was 87.0% ± 9.7%, 70.0% ± 6.6%, 69.0% ± 6.7%, 65.0% ± 9.8%, and 45.0%± 12.1%, showing significant differences between groups A, B, C, D, and group E (P lt; 0.05). No inflammatory reactionexisted around nerve graft. The histological observation indicated that the number of myel inated nerve fiber and the myel in sheath thickness in group E were significantly smaller than that in groups B, C, and D (P lt; 0.01). The fiber diameter of group B was significantly bigger than that of groups C and D (P lt; 0.05) Conclusion CEANA supplementing with dADSC has similar repair effect in peripheral nerve defect to supplementing with dMSC or SCs. dADSC, as an ideal seeding cell in nerve tissue engineering, can be benefit for treatment of peripheral nerve injuries.

    Release date:2016-09-01 09:04 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content