ObjectiveTo explore the influencing factors for Hook-wire precise positioning under CT guidance, determine the best positioning management strategy, and develop Nomogram prediction model. Methods Patients who underwent CT-guided Hook-wire puncture positioning in our hospital from July 2018 to November 2022 were selected. They were randomly divided into a training set and a validation set with a ratio of 7 : 3. Clinical data of the patients were analyzed, and the logistic analysis was used to screen out the risk factors that affected CT-guided Hook-wire precise positioning for the training set. The Nomogram prediction model was constructed according to the risk factors, and the goodness of fit test and clinical decision curve analysis were performed. ResultsA total of 199 patients with CT-guided Hook-wire puncture were included in this study, including 72 males and 127 females, aged 25-83 years. There were 139 patients in the training set and 60 patients in the validation set. In the training set, 70 patients were accurately located, with an incidence of 50.36%. Logistic regression analysis showed that height [OR=3.46, 95%CI (1.44, 8.35), P=0.006], locating needle perpendicular to the horizontal plane [OR=3.40, 95%CI (1.37, 8.43), P=0.008], locating needle perpendicular to the tangent line of skin surface [OR=6.01, 95%CI (2.38, 15.20), P<0.001], CT scanning times [OR=3.03, 95%CI (1.25, 7.33), P=0.014], occlusion [OR=10.56, 95%CI (1.98, 56.48), P=0.006] were independent risk factors for CT-guided Hook-wire precise localization. The verification results of the Nomogram prediction model based on these independent risk factors showed that the area under the receiver operating characteristic curve (AUC) was 0.843 [95%CI (0.776, 0.910)], and the predicted value of the correction curve was basically consistent with the measured value. The AUC of the model in the validation set was 0.854 [95%CI (0.759, 0.950)]. The decision curves showed that when the threshold probability was within the range of 8%-85% in the training set and 18%-99% in the validation set, there was a high net benefit value. Conclusion Height, the locating needle perpendicular to the horizontal plane, the locating needle perpendicular to the tangent line of skin surface, number of CT scans, and occlusion are independent risk factors for CT-guided Hook-wire accurate localization. The Nomogram model established based on the above risk factors can accurately assess and quantify the risk of CT-guided Hook-wire accurate localization.