Objective To investigate the effect of allogeneic chondrocytes-calcium alginate gel composite under the intervention of low intensive pulsed ultrasound (LIPUS) for repairing rabbit articular cartilage defects. Methods Bilateral knee articular cartilage were harvested from 8 2-week-old New Zealand white rabbits to separate the chondrocytes by mechanical-collagen type II enzyme digestion. The 3rd passage chondrocytes were diluted by 1.2% sodium alginate to 5 × 106 cells/mL, then mixed with CaCl2 solution to prepare chondrocytes-calcium alginate gel composite, which was treated with LIPUS for 3 days (F0: 1 MHz; PRF: 1 kHz; Amp: 60 mW/cm2; Cycle: 50; Time: 20 minutes). An articular cartilage defect of 3 mm in diameter and 3 mm in thickness was established in both knees of 18 New Zealand white rabbits (aged 28-35 weeks; weighing, 2.1-2.8 kg), and divided into 3 groups randomly, 6 rabbits in each group: LIPUS group, common group, and model group. Defect was repaired with LIPUS-intervention gel composite, non LIPUS-intervention gel composite in LIPUS group and common group, respectively; defect was not treated in the model group. The general condition of rabbits was observed after operation. The repair effect was evaluated by gross and histological observations, immunohistochemical staining, and Wakitani score at 8 and 12 weeks after operation. Results Defect was filled with hyaline chondroid tissue and white chondroid tissue in LIPUS and common groups, respectively. LIPUS group was better than common group in the surface smooth degree and the degree of integration with surrounding tissue. Defect was repaired slowly, and the new tissue had poor elasticity in model group. Histological observation and Wakitani score showed that LIPUS group had better repair than common group at 8 and 12 weeks after operation; the repair effect of the 2 groups was significantly better than that of model group (P lt; 0.05); and significant differences in repair effect were found between at 8 and 12 weeks in LIPUS and common groups (P lt; 0.05). The collagen type II positive expression area and absorbance (A) value of LIPUS and common groups were significantly higher than those of model group (P lt; 0.05) at 8 and 12 weeks after operation, and the expression of LIPUS group was superior to that of common group at 12 weeks (P lt; 0.05); and significant differences were found between at 8 and 12 weeks in LIPUS group (P lt; 0.05), but no significant difference between 2 time points in common and model groups (P gt; 0.05). Conclusion Allogeneic chondrocytes-calcium alginate gel composite can effectively repair articular cartilage defect. The effect of LIPUS optimized allogeneic chondrocytes-calcium alginate gel composite is better.
Objective To compare product standards of drug and medical device made from sodium alginate and calcium alginate between domestic and abroad, and to emphases on the process parameters monitoring based on different standards. Methods Sodium alginate and calcium alginate standards of both domestic and foreign were analyzed and summarized, and the differences and commonalities of various product standards among each standard were compared. Results Differences exist in product standards of sodium alginate and calcium alginate between domestic and abroad, whether drug or medical device, but the fundamental control points are concordant. Conclusion Companies should focus on product quality control requirements combined with its own unique manufacturing process characteristics to develop reasonable and controllable quality standards, which can ensure safe and effective clinical use.
OBJECTIVE: To study chondrogenesis of calcium alginate-chondrocytes predetermined shapes. METHODS: Chondrocytes isolated from ears of rabbit by type II collagenase digestion, and then were mixed with 1.5% solidium alginate solution. The suspension was gelled to create three spatial shapes as triangle, circle and quadrilateral by immersed into 2.5% CaCl2 for 90 minutes, and then was implanted into the subcutaneous pocket on the dorsum of the rabbit. Samples were harvested at 6 and 12 weeks after implantation. RESULTS: Gross examination of excised specimens at 6 and 12 weeks after implantation revealed the presence of new cartilage of approximately the same dimensions as the original construct. Histologic evaluation using hematoxylin and eosin stains confirmed the presence of cartilage nodules at 6 weeks after implantation. After 12 weeks, mature cartilage was observed and histologic analysis confirmed the presence of well formed cartilaginous matrix. CONCLUSION: Predetermined shapes neocartilage can be regenerated using calcium alginate as a carrier of chondrocytes in the bodies of immune animals.