Objective To establish an effective way to cryopreserveprecartilaginous stem cells(PSCs) of neonate rat. Methods PSCs [fibroblast growth factor-3(FGFR-3) positive cells] were isolated and purified by magnetic cell sorting method. PSCs were cultured and amplified to the third generation. PSCs were preserved in liquid nitrogen. The biological properties of cryopreserved PSCs were investigated by reverse transcriptase polymerase chain reaction(RT-PCR), immunohistochemistry, and immunofluorescence. Results Immunohistochemical and immunofluorescent analysis showed widespread expression of FGFR-3 in cryopreserved PSCs. FGFR-3 could be dectected by RT-PCR in cryopreserved PSCs.Cryopreserved PSCs kept high cell viability, and phenotypic and proliferation characteristics of PSCs in vivo.Conclusion Cryopreservation of PSCs can supply adequate qualified cells for repairing the defects of epiphyseal growth plate by tissue engineering technique.
Objective To establish a better method of isolating andculturing ofneural stem cells(NSCs) in neonatal rat brain. Methods Tissue of brain was isolated from neonatal rats. Different medium and culture concentration were used toculture NSCs of neonatal rat. The culture concentration used were 1×10 4, 1×105, 1×106and 1×107/ml respectively. Ingredient of medium was classified into group 1 to 8 respectively according to whether to add 2% B27, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) as well as the difference in culture concentration. The cells were induced to differentiate asto be confirmed as NSCs, and then were checked by phase contrast microscopy and identified by immunocytochemistry. Results The cells isolated and cultured gathered into neurospheres. The cells were capable of proliferating and maintaining longterm survival in vitro. The cells could be differentiated into neurons and glia.It was to the benefit of the survival of NSCs to add 5% fetal bovine serum(FBS)into the medium at the beginning of the culturing. When 10% FBS was added intothe medium, the neurospheres differentiated quickly. When concentration 1×106/ ml was used, the growth rate of the cells was the highest of all the concentrations. Reasonably higher cell concentration promoted the proliferation of NSCs. It was necessary to add 2% B27, EGF, and bFGF into the medium. The cells had the best growth when 2% B27, 20 ng/ml bFGF and 20 ng/ml EGF were added into the culture medium. EGF and bFGF had cooperative effect. Conclusion A better method of isolating and culturing of NSCs in neonatal rat brain is established and the foundation for future research is laid.