west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Cell viability" 4 results
  • Experimental Study of Viable Stented Homograft Valve Preserved in Liquid Nitrogen

    Abstract: Objective To examine the cell viability and hemodynamic functions of the stented homograft valves preserved in liquid nitrogen. Methods Cell viability of the stented homograft valve preserved in liquid nitrogen after 3 months of preservation (experimental group,n=6) was examined using flow cytometer. Fresh homografts served as control group (n=6). We prepared three sorts of stented homograft valve(21#, 23#, 25#) preserved by liquid nitrogen. In vitro pulsatile flow tests were performed on valves of two groups. Effective opening area EOA),transvalve pressure gradient and regurgitation ratio were recorded at various flow volume, and compare with Perfect bioprosthetic valve. Results The results revealed that the death ratio of endothelial cell was 10.24%±1.71% in the experimental group, and 9.09%±2.72% in the control group (P=0.441). The death ratio of smooth muscle cell was 8.76%±1.82% in the experimental group, and 7.84%±0.59% (P=0.178) in the control group. The death ratio of total cell was 8.79%±1.44% in the experimental group, and 7.40%±0.49% in the control group (P=0.072). There were no significantly differences between two groups. The transvalve pressure gradient of two groups of valve depended on the flow volume, and increased with the flow volume increasing. The transvalve pressure gradient of the stented homograft valve was higher than that of Perfect valve. Regurgitation ratio of the stented homograft valve was bigger than Perfect valve’s. EOA had an increasing character when flow volume increased. EOA of the stented homograft valve was smaller than that of Perfect valve’s. Conclusion Liquid nitrogen can offer the benefit of cell viability of the stented homograft bioprosthetic valves. The stented homograft valve has salisfactory hemodynamic functions.

    Release date:2016-08-30 06:15 Export PDF Favorites Scan
  • BIOLOGICAL CHARACTERISTICS AND MR IMAGING OF SUPERPARAMAGNETIC IRON OXIDE LABELED BMSCs

    Objective To explore the label ing efficiency and cellular viabil ity of rabbit BMSCs labeled with different concentrations of superparamagnetic iron oxide (SPIO) particles, and to determine the feasibil ity of magnetically labeled stem cells with MR imaging. Methods The BMSCs were collected from il iac marrow of 10 adult rabbits (weighing 2.5-3.0 kg) and cultured. The SPIO-poly-L-lysine compound by different ratios mixed with medium, therefore, the final concentration of Fe2+ was 150 (group A), 100 (group B), 50 (group C) and 25 μg (group D) per mL, respectively, the 3rd generation BMSCs culture edium was added to lable; non-labeled cells served as a control (group E). MR imaging of cell suspensions was performed by using T1WI and T2WI sequences at a cl inical 1.5 T MRI system. Results BMSCs were efficiently labeled with SPIO, labeled SPIO particles were stained in all cytoplasms of groups A, B, C and D. With the increasing of Fe2+ concentration, blue dye particles increased. The staining result was negative in group E. The cell viabil ity in groups A, B, C, D and E was 69.20% ± 6.11%, 80.41% ± 2.42%, 94.32% ± 0.67%, 96.24% ± 0.34% and 97.43% ± 0.33%, respectively. There were statistically significant differences between groups A, B and groups C, D and E (P lt; 0.05), and between group A and group B (P lt; 0.05). T1WI images had no specific difference among 5 groups, T2WI images decreased significantly in groups A, B, C, decreased sl ightly in group D, and had l ittle change in group E. The T2WI signal intensities of groups A, B, C, D and E were 23.37 ± 6.21, 26.73 ± 3.60, 29.63 ± 2.82, 45.03 ± 6.76 and 783.15 ± 7.38, respectively, showing significant difference between groups A, B, C, D and group E (P lt; 0.05), and between groups A, B, C and group D (Plt; 0.05). Conclusion BMSCs can be easily and efficiently labeled by SPIO without interference on the cell viabil ity in labled concentration of 20-50 μg Fe2+ per mL. MRI visual ization of SPIO labeled BMSCs is feasible, which may be critical for future experimental studies.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • DIFFERENTIATION OF C17.2 NEURAL STEM CELLS INTO NEURAL CELLS INDUCED BY SERUM-FREE CONDITIONED MEDIUM OF OLFACTORY ENSHEATHING CELLS AND CELL VIABILITY DETECTION OF DIFFERENTIATED CELLS

    ObjectiveTo study the possibility of the C17.2 neural stem cells (NSCs) differentiating into neural cells induced by serum-free condition medium of olfactory ensheathing cells (OECs) and to detect the cell viability of the differentiated cells. MethodsOECs were isloated and cultured from the olfactory bulbs of 3-day-old postnatal mouse to prepare serum-free condition medium of OECs. After C17.2 NSCs were cultured with H-DMEM/F12 medium containing 15% FBS and the cell fusion reached 80%, the 3rd passage cells were induced by serum-free condition medium of OECs in the experimental group, by H-DMEM/F12 in the control group, and non-induced C17.2 NSCs served as the blank control group. The growth condition of cells was observed with inverted microscope. After 5 days, the immunofluorescence staining[microtubule-associated protein 2 (MAP-2) and β-tubulin-Ⅲ] and Western blot (Nestin, β-tubulin-Ⅲ, and MAP-2) were carried out to identify the neural cells derived from NSCs. The cell viabilities were measured by MTT assay and the quantity of lactate dehydrogenase (LDH) release in the medium. ResultsIn the experimental group, the C17.2 NSCs bodies began to contract at 24 hours after induction, and the differentiated cells increased obviously with long synapse at 3 days after induction; in the control group, the cell morphology showed no obvious change at 24 hours, cell body shrinkage, condensation of nuclear chromatin, and lysis were observed at 3 days. The immunofluorescence staining showed that β-tubulin-Ⅲ and MAP-2 of C17.2 NSCs were positive at 5 days after induction, and Western blot suggested that the expression of Nestin protein declined significantly and the expressions of β-tubulin-Ⅲ and MAP-2 protein were increased in the experimental group, showing significant differences when compared with those in the control group and blank control group (P<0.05). The LDH release and the cell viability were 130.60%±6.86% and 62.20%±3.82% in the experimental group, and were 178.20%±5.44% and 18.00%±3.83% in the control group respectively, showing significant differences between 2 groups (P<0.05). The LDH release and the cell viability of experimental group and control group were significantly lower than those of blank control group (100%) (P<0.05). ConclusionNeurotrophic factors from OECs play an important role in inducing C17.2 NSCs differentiation into neural cells and keeping the viability of differentiated cells after induction.

    Release date: Export PDF Favorites Scan
  • ISOLATION AND IDENTIFICATION OF RAT INTERVERTEBRAL DISC NUCLEUS PULPOSUS CELLS AT DIFFERENT SEGMENTS AND COMPARATIVE STUDY ON BIOLOGICAL CHARACTERISTICS

    ObjectiveTo isolate nucleus pulposus cells (NPCs) from the caudal and lumbar intervertebral disc of rat, and to identify the morphology and to compare the characteristics. MethodsThe whole spine was separated from 8-week-old Sprague Dawley rats under the sterile conditions. NPCs of different segments (lumbar group: L1,2-L6, S1; caudal group: C1,2-C17,18) were cultured by adherent cultivation approach. Cellular morphologic change was noted by HE staining and continuous observation under inverted phase contrast microscope. Besides, the aggrecan and collagen type Ⅱexpression were examined by toluidine blue and immunocytochemistry staining respectively. The total protein contents, senescence level, and the cell viability of passage 1-5 (P1-5) were detected. The growth curves of the P1 cells in lumbar and caudal groups were determined by cell counting kit 8. ResultsThe NPCs were isolated and identified successfully. The adherence time of the primary cells (the cell fusion reached 90%) in lumbar group was significantly longer than that in caudal group in primary generation (P<0.05). HE staining showed that cytoplasm was pink with the blue nucleus. Lumbar disc NPCs were spindle. The larger caudal disc NPCs were polygonal or irregular. Toluidine blue staining showed that the proteoglycan was stained as blue. In the cytoplasm of cells, collagen type Ⅱwas stained as brown surround the blue-black nucleus. The cell viability had no significant difference between lumbar and caudal groups and between different passages in the same group (P>0.05). The caudal disc NPCs reached their logarithmic growth phase after 3 days of culture, while the cells in lumbar segments did after 4-5 days of culture. The cell proliferation in caudal segments was more than that in lumbar segments at 3-9 days (P<0.05). The difference in the total protein contents was not significant between cells at P1-5 in 2 groups (P>0.05), and the caudal disc NPCs had higher protein contents than lumbar disc NPCs (P<0.05). There was no significant difference in cell senescence rate between cells at P1, P2, and P3 in 2 groups (P>0.05), but significant difference was shown in senescence rate between 2 groups in cells at P4 and P5 (P<0.05). ConclusionCaudal disc NPCs have a better status, which is more suitable for experiment as a seed cell than the lumbar disc NPCs in the same generation.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content