Objective To observe the anastomotic status of the vortex veins in patients with central serous chorioretinopathy (CSC). MethodsA cross-sectional study of clinical practice. From July 2021 to July 2022, 50 cases (50 eyes) of monocular CSC patients diagnosed through ophthalmic examination at the First Affiliated Hospital of Zhengzhou University were included in the study. Among them, there were 37 males (74.0%, 37/50) and 13 females (26.0%, 13/50), with the mean age of (44.30±9.59) years old. The course of disease from the onset of symptoms to the time of treatment was less than 3 months. The affected eye and contralateral eye of CSC patients were divided into the affected eye group and contralateral eye group, respectively. Fifty healthy volunteers of the same age and gender were selected as the normal control group with 50 eyes. The macular area scanning source optical coherence tomography (OCT) vascular imaging examination was performed with Visual Microimaging (Henan) Technology Co., Ltd. VG200D. Horizontal watershed vortex veins anastomosis rate and asymmetric vortex-venous dilation rate were observed by en face OCT. The device comes with software to calculate the central foveal choroidal thickness (SFCT), mean choroidal thickness (MCT), and choroidal vascular index (CVI). One-way analysis of variance and χ2 test were used to compare the three groups. When variances were unequal between groups, nonparametric tests were performed. ResultsThe SFCT values of the affected eye group, contralateral eye group, and normal control group were (567.12±129.02), (513.26±133.17), (327.64±97.40) μm, respectively; MCT were (407.38±97.54), (388.24±94.13), (275.46±60.55) μm, respectively; CVI were 0.34±0.05, 0.32±0.04, and 0.27±0.04, respectively; anastomosis rates of vortex veins were 98% (49/50), 78% (39/50), and 40% (20/50), respectively; asymmetric dilation rates of vortex veins were 96% (48/50), 88% (44/50), and 48% (24/50), respectively. The differences of SFCT (F=53.974), MCT (Z=51.415), CVI (F=28.082), vortex vein anastomosis rate (χ2=43.056), asymmetric dilation rate of vortex veins (χ2=37.728) among three groups were statistically significant (P<0.001). Compared with the contralateral eye group, the SFCT, MCT, CVI, vortex vein anastomosis rate, and vortex vein asymmetric dilation rate in the affected eye group were significantly higher than those in the contralateral eye group. Among them, the differences of SFCT (t=2.054), CVI (t=2.211), and vortex vein anastomosis rate (χ2=9.470) were statistically significant (P<0.05); the differences of MCT (Z=7.490), asymmetric dilation rate of vortex veins(χ2=2.714) were not statistically significant (P=1.000, 0.140). ConclusionsSFCT, MCT, and CVI in the affected and contralateral eyes of monocular CSC patients significantly increase. The anastomotic rate and asymmetric dilation rate of the vortex vein in the opposite eye were lower than those in the affected eye.
Objective To quantitatively evaluate the changes of choroidal biomarkers in patients with central serous chorioretinopathy (CSC) and preliminarily explore its pathogenesis. MethodsClinical cross-sectional study. From July 2021 to December 2022, 74 eyes of 65 patients with CSC (CSC group) confirmed by ophthalmic examination at the First Affiliated Hospital of Zhengzhou University were included in the study. Among them, 46 patients (51 eyes) were male, 19 patients (23 eyes) were female. The duration from the onset of symptoms to the time of treatment was less than or equal to 3 months. A control group consisted of 40 healthy volunteers (74 eyes) matched in age and gender. Among them, 26 patients (50 eyes) were male, and 14 patients (24 eyes) were female. Using VG200D from Microimaging (Henan) Technology Co., Ltd., macular scanning source light coherence tomography angiography was performed, with scanning range 6 mm × 6 mm. According to the division of the diabetes retinopathy treatment research group, the choroid within 6 mm of the macular fovea was divided into three concentric circles centered on the macular fovea, namely, the central area with a diameter of 1 mm, the macular area with a diameter of 1-3 mm, and the surrounding area of the fovea with a diameter of 3-6 mm. The device comes with software to record the three-dimensional choroidal vascular index (CVI), choroidal vascular volume (CVV), perfusion area of the choroidal capillary layer (CFA), choroidal thickness (CT), and three-dimensional CVI, CVV, and CT in the upper, temporal, lower, and subnasal quadrants within 6 mm of the fovea. Quantitative data between the two groups were compared using an independent sample t-test. Qualitative data comparison line χ2 inspection. The value of receiver operating curve (ROC) analysis in predicting the occurrence of CSC, including CVI, CVV, CFA, and CT. ResultsCompared with the control group, the CVI (t=3.133, 4.814), CVV (t=7.504, 9.248), and CT (t=10.557, 10.760) in the central and macular regions of the affected eyes in the CSC group significantly increased, while the CFA (t=-8.206, -5.065) significantly decreased, with statistically significant differences (P<0.05); CVI (t=7.129), CVV (t=10.020), and CT (t=10.488) significantly increased within 6 mm of the central fovea, while CFA (t=-2.548) significantly decreased, with statistically significant differences (P<0.05). The CVI (t=4.980, 4.201, 4.716, 8.491), CVV (t=9.014, 7.156, 7.719, 10.730), and CT (t=10.077, 8.700, 8.960, 11.704) in the upper, temporal, lower, and lower nasal quadrants within 6 mm of the central fovea were significantly increased, with statistically significant differences (P<0.05). In the CSC group, the maximum CVI and CVV were (0.39±0.10)% and (1.09±0.42) mm3, respectively, on the nasal side of the affected eye. Upper CT was (476.02±100.89) μm. The nasal side CVI, CVV, and CT have the largest changes. The ROC curve analysis results showed that the area under the curve of CT, CVV, and CVI within 6 mm of the central region, macular region, and fovea was over than 0.5. Subcentral CT was the most specific for the diagnosis of CSC. ConclusionChoroidal biomarkers CVI, CVV, and CT in CSC patients increase, while CFA decreases. Central CT is the most specific for the diagnosis of CSC.
Diabetic retinopathy (DR) is the main cause of blindness in diabetic patients. Early diagnosis and intervention are essential to improve the quality of life of patients with DR. Choroidal vascularity index (CVI) is the ratio of choroidal luminal area to total area, which can reflect the structure and blood flow of the choroid, and has been used to evaluate the choroidal condition in various eye diseases. CVI has shown great potential in the prediction, early intervention, disease assessment, and prognosis of DR. The relationship between CVI and photoreceptors needs more research, and CVI may be used as a predictive indicator of photoreceptor health and visual prognosis. In addition, the study of CVI at different layers of the choroid is limited by the accuracy of stratification and the repeatability of measurement. Artificial intelligence and other technologies may provide solutions for this. In the future, through more comprehensive study and the help of artificial intelligence, the value of CVI will be further enriched, which is of great significance for the elucidation of the pathogenesis of DR and serving the clinic.