ObjectiveTo observe the effects of cluster therapy combined with anisodamine, dexamethasone and ambroxol on arterial blood gas, inflammatory cytokines and pulmonary pathological changes by making an early (<48 h) primary blast lung injury model in rats. MethodsEighty Wistar rats were randomly divided into six groups, ie. a control group (n=5), an injury group (n=15), an ambroxol treatment group (n=15), a dexamethasone treatment group, a scopolamine treatment group (n=15), a combination of ambroxol, dexamethasone and anisodamine group (n=15). The treatment groups were injected intraperitoneally with ambroxol 46.7 mg/kg (three times a day) or (and) dexamethasone at 5 mg·kg–1·d–1 or (and) anisodamine at a dose of 3.33 mg/kg (three times a day). The rats in the injury group were injected intraperitoneally with an equal volume of normal saline. Respiratory rate and weight change were observed before and after injury. Five rats were sacrificed at 6 hours, 24 hours and 48 hours after injury in each experimental group. Arterial blood gas analysis, Yelverton pathological score, lung tissue wet/dry weight ratio, serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were measured. The lung histopathology was observed. ResultsAfter lung blast injury, the rats in the injury group showed progressive respiratory acidosis, and hypoxemia increased with the increase of IL-6 and TNF-α in a time-dependent manner. The PaO2 decreased in the groups with ambroxol, dexamethasone and anisodamine alone or in combination with anisodamine, and the contents of serum IL-6 and TNF-α decreased. Pathological edema and inflammatory infiltration of lung tissue were alleviated significantly. ConclusionsAfter treatment with dexamethasone, anisodamine and ambroxol after lung blast injury, blood gas analysis is improved, inflammatory factor level is decreased and lung injury is alleviated, indicating that the three drugs can treat lung detonation injury in rats. The cluster therapy is superior to the single drug therapy.