Objective To investigate the effect of collagen type I concentration on the physical and chemical properties of the collagen hydrogel, and to analyze the effect of different concentrations of collagen type I hydrogel on the phenotype and gene expression of the chondrocytes in vitro. Methods Three kinds of collagen hydrogels with concentrations of 12, 8, and 6 mg/ mL (C12, C8, and C6) were prepared, respectively. The micro-structure, compressive modulus, and swelling ratio of the hydrogels were measured and analyzed. The chondrocytes at 2nd passage were cocultured with three kinds of collagen hydrogels in vitro, respectively. After 1-day culture, the samples were stained with fluorescein diacetate (FDA) / propidium iodide (PI) and the cell activity was observed under confocal laser microscope. After 14-day culture, HE staining and toluidine blue staining were carried out to observe the histological morphology, and mRNA expressions of chondrocytes related genes (collagen type II, Aggrecan, collagen type I, collagen type X, Sox9) were determined by real-time fluorescent quantitative PCR. Results With the increase of collagen type I concentration from 6 to 12 mg/mL, the physical and chemical properties of the collagen hydrogels changed significantly: the fiber network became dense; the swelling ratios of C6, C8, and C12 were 0.260 ± 0.055, 0.358 ± 0.072, and 0.539 ± 0.033 at 192 hours, respectively, showing significant differences among 3 groups (P lt; 0.05); and the compression modulus were (4.86 ± 0.96), (7.09 ± 2.33), and (11.08 ± 3.18) kPa, respectively, showing significant differences among 3 groups (P lt; 0.05). After stained with FDA/PI, most cells were stained green, and few were stained red. The histological observation results showed that the chondrocytes in C12 hydrogels aggregated obviously with b heterochromia, chondrocytes in C8 hydrogels aggregated partly with obvious heterochromia, and chondrcytes in C6 hydrogels uniformly distributed with weak heterochromia. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of collagen type II and Aggrecan were at the same level in C12, C8, and C6; the expressions of collagen type I, Sox9, and collagen type X were up-regulated with the increase of collagen type I hydrogels concentration, and the expressions were the highest at 12 mg/mL and were the lowest at 6 mg/mL, showing significant differences among 3 groups (P lt; 0.05). Conclusion Increasing the concentration of collagen hydrogels leads to better mechanical properties and higher shrink-resistance, but it may induce the up-regulation of cartilage fibrosis and hypertrophy related gene expression.
ObjectiveTo construct large block of engineered liver tissue by co-culture of fibroblasts and hepatocytes on collagen hydrogels in vitro and do in vivo implantation research. MethodsSilastic mould was prepared using three-dimensional printing technology. The collagen hydrogel scaffold was prepared by collagen hydrogel gel in the silicone mould and was removed. Sprague Dawley rat lung fibroblasts were co-cultured with primary hepatocytes at a ratio of 0.4:1 on the collagen hydrogel scaffold to construct large block of engineered liver tissue in vitro (group B), and primary hepatocytes cultured on the collagen hydrogel scaffold served as control group (group A). The cell morphology was observed, and the liver function was tested at 1, 3, 7, 14, and 21 days after culture. The rat model (n=24) of hepatic cirrhosis was made by subcutaneous injection of carbon tetrachloride. And in vivo implantation study was carried in cirrhosis rat model. The phenotypic characteristics and functional expression of hepatocytes were evaluated at 3, 7, 14, 21, and 28 days after implantation. ResultsIn vitro results indicated that hepatocytes in group B exhibited compact polyhedral cells with round nuclei and high expression of liver function. Moreover, cells aggregated to the most at 7 days. Album production and urea synthesis incresed significantly when compared with group A (P<0.05). In vivo results showed hepatocytes in group B survived for 28 days, and albumin production and urea synthesis were significantly increased. In addition, hepatocytes showed an aggregated distribution and cord-like structures, which was similar to normal liver tissue. ConclusionThe large block of engineered liver tissue constructed by co-cultured cells can form tissue similar to normal liver tissue in vivo, and survive for a long time, laying foundations for building more complete engineered liver tissue in the future.