Abstract: Objective?To evaluate clinical experiences and long-term outcome of morphologic left ventricle (mLV) retraining for congenitally corrected transposition of the great arteries (cCTGA). Methods From May 2005 to May 2011, 24 patients with cCTGA anomaly underwent left ventricle retraining by means of pulmonary artery banding in Fu Wai Hospital. There were 13 males and 11 females with their age of 0.17-22.00 (3.73±4.35) years and body weight of 5.10-61.00(15.71±10.95)kg. Major concomitant malformations included tricuspid valve insufficiency (TR)in 23 patients (mild in 11 patients, moderate in 7 patients, severe in 5 patients), restrictive ventricular septal defect in 18 patients, atrial septal defect in 5 patients, patent foramen ovale in 5 patients, patent ductus arteriosus in 4 patients, mild pulmonary stenosis in 5 patients, and aortic coarctation in 1 patient. All the patients were preoperatively diagnosed by echocardiography, cardiovascular angiography or cardiac catheterization. The mLV end diastolic diameter (mLVEDD) was 8-32(21.56±6.60)mm, posterior wall thickness of mLV was 2-7 (4.29±1.52)mm , mLV to morphologic right ventricle (mRV) pressure ratio (mLV/mRV) was 0.12-0.65 (0.41±0.12). Pulmonary artery banding operation was performed through upper partial sternotomy or median sternotomy without circulatory arrest. Results The mLV/mRV pressure ratio reached to 0.57-0.93 (0.76±0.10) under direct pressure monitoring after surgery. There was no in-hospital death in this group. Echocardiography before discharge showed that the structure and function of the two ventricles were good, the interventricular septum moved partially towards mRV, mLVEDD was increased slightly, and there was a tendency of reduced TR. Postoperative follows-up was from 1 to 35 months, and there was no late death during follow-up. All the patients were in good general condition with stable vital signs and New York Heart Association (NYHA) classⅠ-Ⅱ. The mLVEDD was 14-40 (26.17±7.11) mm, posterior wall thickness of mLV was 4-9 (4.95±1.44)mm, mLV/mRV pressure ratio was 0.52-0.98 (0.72±0.16) , and TR was significantly decreased. Fourteen patients successfully underwent staged complete double-switch procedure. Conclusion Left ventricle retraining is a safe and effective method to train mLV for cCTGA patients. Pressure load and posterior wall thickness of mLV are increased, mLV cavity is dilated, and TR is significantly reduced after the surgery.
Abstract: Objective To evaluate clinical outcomes of pulmonary artery banding for morphologic left ventricular training in corrected transposition of the great arteries.?Methods?A total of 89 patients with corrected transposition of the great arteries underwent surgical repair in Shanghai Children’s Medical Center from January 2007 to December 2011 year. Among them, 11 patients underwent pulmonary artery banding, whose clinical records were retrospectively analyzed. Except that one patient was 12 years, all other patients were 3 to 42 (16.40±11.67) months old and had a body weight of 6 to 32 (11.70±7.20)kg. All the patients were diagnosed by echocardiogram and angiocardiogram.?Results?There was no postoperative death after pulmonary artery banding in 11 patients. The pulmonary arterial pressure/systemic blood pressure ratio (Pp/Ps) was 0.3 to 0.6 (0.44±0.09) preoperatively and 0.6 to 0.8 (0.70±0.04) postoperatively with statistical difference (P<0.01). Tricuspid regurgitation was mild in 2 (18.2%) patients, moderate in 5 (45.4%), severe in 4 (36.4%)preoperatively,and none in 2(18.2%)patients, mild in 7 (63.6%),and mild to moderate in 2 (18.2%)postoperatively. Five patients underwent staged double-switch operation after pulmonary artery banding at 15.20±8.31 months, and 1 patient died. The other 6 patients were followed up for 18.83±3.43 months, and echocardiogram showed tricuspid regurgitation as trivial in 2 (33.3%), mild in 3 (50.0%), and moderate in 1 (16.7%)patient.?Conclusions?In patients with corrected transposition of the great arteries, pulmonary artery banding is helpful to reduce tricuspid regurgitation, and morphologic left ventricle can be trained for staged double-switch operation with good clinical outcomes. It is important to follow up these patients regularly to evaluate their morphologic left ventricular function and tricuspid regurgitation after pulmonary artery banding.
Objective To investigate the surgical indications and the mid and long term results of morphologic tricuspid valve replacement for corrected transposition of the great arteries(cTGA). Methods From September 1997 to September 2007, 18 cases with cTGA were treated in Fu Wai Hospital. There were 15 male and 3 female, aged from 16 to 51 years(33.3±12.8 years), and weighed from 47 to 90 kg(60.9±14.7 kg). There were 10 cases with isolated morphologic tricuspid valve insufficiency, 3 complicated with ventricular septal defect, 2 complicated with ventricular septal defect and pulmonary valve stenosis, 2 with morphologic tricuspid valve insufficiency after septal defect repair, and 1 with mechanical valve dysfunction after morphologic tricuspid valve replacement. The preoperative mean morphologic right ventricle ejection fraction was 562%±11.6%. Of the 18 cases, 12 were in grade Ⅱ and 6 were in grade Ⅲ according to New York Heart classification(NYHA).All the cases had undergone morphologic tricuspid valve replacement. Postoperative indices such as cardiac function and morphological right ventricle ejection fraction were followed up. Results One patient died of postoperative low cardiac output syndrome. Two had pervavlvular leak, which were cured by pervavlvular leak repair at 7th and 30th day after operation, respectively. Sixteen were followed up with a followup time of 57.0±407 months. There was no statistical significance between preoperative and postoperative mean morphologic right ventricle ejection fraction(52.8%±9.2% vs.56.2%±11.6%; t=2.062, Pgt;0.05). The followup showed that 12 were in NYHA grade Ⅰ or Ⅱ, and 4 were in NYHA grade Ⅲ. There was no statistical significance between preoperative and postoperative percentage of cases in NYHA grade Ⅲ(χ2=1.532,Pgt;0.05). Conclusion Morphologic tricuspid valve replacement can prevent the further damage to morphologic right ventricular function caused by morphologic tricuspid valve insufficiency. The mid and long term results were satisfying. During the followup, the morphologic right ventricle can function appropriately.