OBJECTIVE: To investigate the characteristic and phenotype of ectomesenchymal stem cells of human fetal facial processes and the procedure of spontaneous differentiation to smooth muscle cells. METHODS: The primary ectomesenchymal cells of E 50 human fetal facial processes were isolated by 2.5 g/L trypsin and cultured with DMEM/F 12 with 10(-6) U/L leukemia inhibitor factor(LIF). The morphology and growth rate were observed by inverted microscop. After being withdrawn LIF, the characteristic of cells were identified by immunohistochemistry and RT-PCR. Ultrastructure was observed by transmission electron microscope. RESULTS: The cultured cells displayed monolayer growth and were fibroblast-like with 2-4 processes. The cells were stainely positived for anti-human natural killer cell marker-1, Vimentin, S-100, neuron specific enolase, myoglobin and VIII factor, but negatively for glial fibrillary acidic protein, neural fiblament, alpha-SMA and cytokeratin in immunohistochemistry. Two days after being withdrawn the LIF, cells expressed alpha-SMA in protein and mRNA levels. The cells were rich in muscular filament-like structure and dense bodies under transmission electron microscope. CONCLUSION: Cultured cells are undifferentiated ectomesenchymal stem cells. The cells have the potential for differentiating spontaneously to smooth muscle cell.
OBJECTIVE This paper was to study the biological characteristics of the transformed human embryonic tendon cells, the relation between cell growth and culture conditions, and to compare these features with that of human embryonic tendon cells. METHODS The pts A58H plasmid had successfully used to transform a tendon cell line from human embryo in our past work. The human embryonic tendon cells and the transformed human embryonic tendon cells were cultured in vitro. In different culture conditions, the growth curve were drawn respectively. Population dependence and proliferation capability of the cells were investigated through plate cloning test and soft agar culture. The collagen secreted by cells was identified by immunohistochemical method. RESULTS In routine culture condition, the growth properties of the human embryonic tendon cell and transformed cells were almost identical. The growth properties of the transformed cells were not changed when the cells were frozen storage. There were changes of growth characteristics of the transformed cells when the culture temperature was changed. The transformed cells could subcultured continually and permanently. The proliferation capability of the transformed cells were ber than that of the human embryonic tendon cells. Moreover, the growth of the transformed cells was serum-dependent, and the phenomenon of contact inhibition was observed. The transformed cells were not able to grow on soft agar culture. They had the capacity of secreting collagen type I. CONCLUSION The transformed human embryonic tendon cells could be subcultured continually and permanently, and their growth could be controlled by changing their culture conditions and they had no malignant tendency in biological characteristics. They could be taken as an ideal experimental material for tendon engineering.
Human fibroblasts and human epidermal keratinocytes were used for culture. Chitosan solution were added in the culture solution(DMEM). After 72 hours, the fibroblasts showed rapid growth in the control culture without Chitosan, But the numbers of human fibroblasts from growth was decreased as the concentration of Chitosan was increasing. On the contrary the human epidermal keratinocytes growed more rapidly in the culture with Chitosan than in the culture without Chitosan. The results showed that Chitosan inhibited the growwth of human fibroblast and stimulated the growth of human epidermal keratinocyte .
We cultured retinal g[ial cells(RGC)from immature rats and observed the migratory responses to fetal bovine serum(FBS).We found thai FItS stimulats the migration of RGC in a dose response manner. We also observed the inhibition of heparin on RGC cben,otaxis,and found that heparin(10U/ml)decreased significantly the RGC migration stimulated by serum(0%to 10%)(all Plt;0.0001).but 1U/ml of heparin bad no effect on RGC chemotaxis(P=0.5118).These results showed that FBS contains chemoattractants for RGC,and heparin can inhibit RGC chemotaxis stimulated by serum. (Chin J Ocul Fundus Dis,1994,10:170-173)
Purpose To observe the expression of proliferating cell nuclear antigen(PCNA)and bcl-2 of cultured human retinal pigment epithelial cells(RPE). Methods SABC techniques were applied for immunocytochemical staining of cultured RPE with mouse anti-human PCNA monoclonal antibody and rabbit antihuman bcl-2 antibodies. Results 31.2% and 50.6% cultured cells were positive to anti-human PCNA at 24h and 48h after seeding,respectively.The positive staining was mottled in the nucleus.positive staining for bcl was seen in 76%to 90% cells as fine granules scattered within the cytoplasm. Conclusion One half of cultured RPE expressed PCNA,indicating that the cells were in phase S of the cell cycle.Positive staining for bcl-2 appeared in much more RPE cells.These biological markers may be associated with the growth activity of cultured RPE. (Chin J Ocul Fundus Dis,1998,14:26-28)
Objective To study the differenation of adult marrow mesenchymal stem cells(MSCs) into vascular endothelial cells in vitro and to explore inducing conditions. Methods MSCs were isolated from adult marrow mononuclear cells by attaching growth. MSCs were divided into 4 groups to induce: the cells seeded at a density of 5×103/cm2 in 2% and 15% FCS LDMEM respectively (group1 and group 2), at a density of 5×104/cm2 in 2% and 15% FCS LDMEM respectively (group 3 and group 4); vascular endothelial growth factor(VEGF) supplemented with Bovine pituitary extract was used to induce the cell differentiation. The differentiated cells were identified by measuring surfacemarks (CD34, VEGFR2, CD31 and vWF ) on the 14th day and 21st day and performed angiogenesis in vitroon the 21st day.The cell proliferation index(PI)of different inducing conditions were measured. Results After induced in VEGF supplemented with Bovine pituitary extract, the cells of group 3 expressed the surface marks CD34, VEGFR-2, CD31 and vWF on the 14th day, the positive rates were 8.5%, 12.0%, 40.0% and 30.0% respectively, and on the 21st day the positive ratesof CD34 and VEGFR2 increased to 15.5% and 20.0%, while the other groups did not express these marks; the induced cells of group 3 showed low proliferating state(PI was 10.4%) and formed capillary-like structure in semisolid medium. Conclusion Adult MSCs can differentiate into vascular endothelial cellsafter induced by VEGF and Bovine pituitary extract at high cell densities and low proliferatingconditions,suggesting that adult MSCs will be ideal seed cells forthe therapeutic neovascularization and tissue engineering.
To investigate the effect of hepatocyte growth factor (HGF) on prol iferation of cultured human eccrine sweat gland epithel ial cells (hESGc) and the involvement of phosphorylation of ERK1/2. Methods hESGc were cultured in keratinocyte serum free medium (KSFM) and the first generation of hESGc was harvested. The expression of C-met was detected by immunocytochemistry. MTT assay was used to detect the effect of HGF on the prol iferation of hESGc. The cells were divided into blank group, control group and experimental group. The culture density was 2 × 103 cells/hole in control group and experimental group. Two hundred μL KSFM with HGF in different levels was added to every hole. hESGcwere cultured in KSFM with HGF at different levels (2, 20, 40 and 80 ng/mL) in experimental group, in KSFM without HGF incontrol group, and in KSFM without HGF and no hESGc in blank group. The cell prol iferation was observed in xperimental group 2 and 4 days later. Western blot was used to detect the expression of phosphorylated ERK1/2 at 40 ng/mL HGF after 0, 5, 30, 90 and 120 minutes. Results The results were positive for anti-C-met staining in the cytoplasm. HGF (40 ng/mL and 80 ng/mL) significantly improved the prol iferation of hESGc (P lt; 0.05). When cultured in the KSFM with 40 ng/mL HGF, the cell prol iferation rate and the absorbance were 74.2%, 0.239 3 ± 0.070 9 at 2 days and 74.8%, 0.287 8 ± 0.074 3 at 4 days; showing significant differences when compared with control group (P lt; 0.05). When cultured in KSFM with 80 ng/mL HGF, the cell prol iferation rate and the absorbance were 54.5%, 0.212 3 ± 0.059 2 at 2 days and 40.3%, 0.231 0 ± 0.056 7 at 4 days; showing significant differences when compared with control group (P lt; 0.05). The expression of p-ERK1/2 reached to the maximum after stimulation of 40 ng/mL HGF for 5 minutes, and relative integral absorbance (RIA) was 0.593 2 ± 0.192 2, increased 8.1 times compared with instant stimulation (P lt; 0.01). Conclusion HGF could induce the prol iferation of hESGc and activate the phosphorylation of ERK1/2 protein.
Objective To establish a purified model of rat retinal ganglion cells (RGCs) cultured by serum-free medium,and provide a good cell model to investigate the damage of RGCs in glaucoma,retinal ischemia,and degenerative retinopathy. Methods Two monoclonal antibodies,anti-rat SIRP(OX-41)against rat macrophage and antibody against rat Thy-1(OX-7),were used to purify and characterize RGCs from 1-3-day old Sprague-Dawley(SD)rats by means of two-step filtration.Purified RGCs were cultured in serum-free neurobasal medium containing B27 and ciliary neurotrophic factor(CNTF) meeting the neuronal cellrsquo;s special requirements.Photomicrographs illustration,immunfluorescence staining of Thy-1,calcein-acetoxymethyl ester(calcein-AM)fluorescence images were used to observe and identify cultured retinal cells and purified RGCs. Results Among the primary cultured rat retinal cells,91% were retinal neurons.Protuberances of RGCs were seen after cultured for 24 hours.At the4th to 8th day,many cells had uniform configuration,large body,and long protuberances. At the 14th day,over 60% cells maintained viability.Immunoflurescence staining of Thy-1 showed the purity of RGCs was about 90%. The results of calcein-AM staining,which stained the living cells only,showed large cell body of RGCs and most of RGCs had a protuberance whose length was twice longer than the diameter of the cells. Conclusion RGCs cultured by serum-free medium has uniform size,good configuration,and high purity,which is adapt to the research of damage of RGCs caused by various factors and to evaluate the protective effects of neuroprotective agents. (Chin J Ocul Fundus Dis, 2006, 22: 200-203)
ObjectiveTo provide theoretical and technological support for further study of liver metabolism and disease by comparing the advantages and disadvantages of various artificial liver models (biological). MethodsLiteratures were searched and compared to summarize the requirement for liver donor, isolation, and culture of hepatocyte. ResultsIn the separation method of hepatocyte, mechanical separation method had no requirement for liver donor, and was easy to acquire hepatocyte, while the acquired hepatocyte would be destructed severely, and the survival rate was low. On the other hand, the restriction of the digestion of the hepatocytes to the liver cell samples was unlimited, while the key of the enzyme digestion method was to regulate the balance between enzyme concentration and digestion time, which was limited to function researches of hepatocyte, and research about the responds of hepatocyte against outside, and other few researches. Perfusion digestion method had been widely applied for animal test. The Ca2+, collagenase and perfusion rate, pH value, buffer, and intubation method all play vital roles. During the cultivation, we needed to choose different methods according to several experiments, and add different additives in the appropriate medium. Different biological reactors had different advantages, disadvantages, and applicable conditions. ConclusionsThe donor selection is based on various experimental purposes to harvest hepatocytes from different sources. Whether on the separation process or on the cultivation process, according to the specific circumstances, such as the concentration, perfusion time, and the choice of different kinds of culture medium, we can choose different kinds of bioreactors, but all kinds of methods are still remained with multiple insufficiencies, which require more researchers to improve.
OBJECTIVE To prevent early closure of growth plate and developmental deformities of limbs by allografts of cultured cartilages into growth plate defects of rabbits. METHODS Chondrocytes isolated from articular cartilage of 1-month rabbits formed cartilage after cultivation in centrifuge tubes. The cartilages cultured for two weeks were implanted into growth plate defects of proximal tibiae of 6-weeks rabbits. At 4th and 16th weeks, X-ray, histologic and immunohistochemical examination were performed. RESULTS The tibiae had no marked deformities after 4 weeks of operation. Histologic examinations showed that the defects were filled with cartilage. Immunohistochemical results of type II collagen were positive. The tibiae with allografts of cultured cartilages had no evident deformities after 16 weeks of operation. Histologic examination showed nearly closure of growth plates. On the contrary, the tibiae on control side formed severe deformities and growth plate were closed. CONCLUSION Allograft of cultured cartilages into growth plate defects may replace lost growth plate tissues, maintain normal growth of limbs and prevent developmental deformity.