west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Culture in vitro" 12 results
  • EFFECT OF SUSTAINED INCREASING FIBROBLAST GROWTH FACTOR SIGNAL ON DEVELOPMENT OF EPIPHYSEAL PLATE CULTURED IN VITRO

    Objective The biological effects of fibroblast growth factor (FGF) may be different under different intensities and durations. To investigate the impact of sustained increasing FGF signal upon the development of epiphyseal plate. Methods Epiphyseal plates cultured in vitro were obtained from embryonic C57BL/6J mice, and were divided into control group (0.1% DMSO), basic FGF (bFGF) group (100 μg/L bFGF and 0.1% DMSO), and PD98059 group (100 μg/L bFGF and 50 μmol/L PD98059 with 0.1% DMSO). The total length (TL) and ossified tissue length (OSL) of the cultured bones weremeasured with Calcein staining 6 days after culture. The expressions of Indian hedgehog (Ihh), collagen type II (Col II), and Col X genes were detected by real-time fluorescent quantative PCR 7 days after culture. Results The embryonic bones cultured in vitro continued growth. At 6 days after culture, there was no significant difference in increased percentage of TL between bFGF group and control group (P gt; 0.05), the increased percentage of OSL in bFGF group was significantly less than that in control group (P lt; 0.05). There was no significant difference in the increased percentage of TL and OSL between PD98059 group and control group (P gt; 0.05), but they were significantly higher than those of bFGF group (P lt; 0.05). At 7 days after culture, the gene expressions of Ihh, Col II, and Col X in bFGF group significantly decreased when compared with those in control group (P lt; 0.05). There was no significant difference in the gene expressions of Col II and Col X between PD98059 group and control group (P gt; 0.05), but the gene expressions were significantly higher than those of bFGF group (P lt; 0.05); the expression of Ihh in PD98059 group was significantly higher than that in control group and bFGF group (P lt; 0.05). Conclusion Sustained increasing FGF signal may affect the Col II and Col X expressions by down-regulating Ihh, which may lead to the development retardation of epiphyseal plate cultured in vitro. The external signal regulated kinase pathway may play an important role in the process.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • COMPARISON OF MYOGENIC DIFFERENTIATION ABILITY OF ADIPOSE-DERIVED STEM CELLS FROM DIFFERENT SITES IN RABBIT

    Objective To compare the myogenic differentiation abil ity in vitro of rabbit adipose-derived stem cells (ADCSs) from different sites so as to provide ideal seed cells for repair and reconstruction of urinary tract. Methods Adipose tissues were obtained from the nape of the neck, post peritoneum, and vicinity of epididymis of a 4-month-old male New Zealand rabbit and ADSCs were harvested through collagenase digestion. ADSCs were purified by differential attachment method. The protein marker CD44 of rabbit ADSCs was used to identify the stem cells by immunocytochemistry, then the5th generation of ADSCs were induced to differentiate into adipogenic, osteogenic, and myogenic cells. Multi- differentiation was confirmed by Oil red O staining, von Kossa staining, and RT-PCR. Myogenic differentiation abil ities of ADSCs from 3 different sites were compared between the control group (L-DMEM medium containing 10%FBS) and the experimental group (myogenic medium) by RT-PCR method. Results ADSCs could be easily isolated from adipose tissues of the nape of the neck, post peritoneum, and vicinity of epididymis. ADSCs displayed a typical cobblestone morphology. Brown particles could be seen in ADSCs by CD44 immunocytochemistry staining. Oil red O staining showed red fat drops in ADSCs after 14 days of adipogenic culture. Black matrix could be seen in ADSCs by von Kossa staining after 28 days of osteogenic culture. RT-PCR detection showed moderate α-actin expression in the control group and b α-actin expression in the experimental group after 42 days of myogenic culture. The growth rate of α-actin from the adipose tissue of post peritoneum (28.622% ± 4.879%) was significantly lower (P lt; 0.05) than those from the adipose tissues of the nape of the neck (35.471% ± 3.434%) and vicinity of epididymis (38.446% ± 4.852%). Conclusion The ADSCs from different sites show different myogenic differentiation abil ities in vitro. ADSCs from the adipose tissues of the nape of the neck and vicinity of epididymis can be used as ideal seed cells for tissue engineering of lower urinary tract.

    Release date:2016-09-01 09:03 Export PDF Favorites Scan
  • EXPERIMENTAL RESEARCH OF THE PROMOTION EFFECT OF AUTOGENEIC PRP ON OSTEOGENICDIFFERENTIATION OF HUMAN ADIPOSE-DERIVED STEM CELLS IN VITRO

    To study the effect of autogeneic PRP on prol iferation and osteogenetic differentiation of human adipose-derived stem cells (ADSCs) in vitro. Methods ADSCs were isolated from adipose tissue obtained from donor undergoing l iposuction and were cultured, and growth condition of the cells was observed by inverted microscope. ADSCs at passage 3 were cultured in adipogenic or chondrogenic medium and underwent identification, immunofluorescence staining observations for CD29 and CD44 were performed. ADSCs at passage 3 were divided into 2 groups: PRP group cultured by osteogenic induction culture medium containing 10 mL/L PRP, and control group cultured by osteogenic induction culture medium without PRP. Then growth condition of the cells was observed by inverted microscope. MTT method was used to observe cell prol iferation activity 1, 2, 3, 4 and 5 days after culture. ALP activity detection was conducted 7, 14, 21 and 28 days after culture. ALP staining was performed on PRP group 7 and 14 days after culture. Al izarin red staining was performed on PRP group 14 days after culture to detect the formation of calcium nodule. Results Under the inverted microscope, most ADSCs at passage 3 were spindle-shaped and the doubl ing time was about 35 hours. Adipogenic and chondrogenic differentiation were confirmed, and the cells were positive for CD29 and CD44 immunofluorescence staining. MTT method revealed the absorbance value of PRP group at 1, 2, 3, 4 and 5 days was 0.137 ± 0.015, 0.219 ± 0.023, 0.367 ± 0.031, 0.586 ± 0.039 and 0.948 ± 0.046, respectively, and in the control group, it was 0.081 ± 0.009, 0.115 ± 0.012, 0.162 ± 0.017, 0.242 ± 0.025 and 0.356 ± 0.032, respectively, suggesting there were significant differences between two groups (P lt; 0.01). At 7 days after osteogenic induction, PRP group was positive for ALP staining, grey-black cell plasm and black precipitate were evident; the positive cells increased

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON BIOLOGICAL FEATURE OF RABBIT INTERVERTEBRAL DISC NUCLEUS PULPOSUS IN VITRO

    Objective To research the biological feature of intervertebral disc nucleus pulposus cells (NPCs) by observing cell morphous, phenotype and ultramicrostructure. Methods The NPCs from 2-week-old healthy rabbit werecultured in DMEM/F12 medium with 15% FBS. The cell biological features were observed by inverted phase contrast microscope, l ight microscope, electron microscope, cell vital ity assay, cell growth curve and cells staining after harvest and during the periods of culturing the primary, the 1st passage and 2nd passage. Results The results of inverted phase contrast microscope showed that the primary passage adhered at 5 days, grew exponentially at 6-8 days, and were subcultured after covering the bottom at 17 days. The phenotype of the NPCs changed from polygon to long fusiform with passage increased; the vital ity assay showed that there was about 95%-97%, 98%-100%, 100% and 75%-80% NPCs survived just after isolation from intervertebral disc, during the period of culturing the primary, the 1st passage and the 2nd passage, respectively. The toluidine blue staining of the NPCs was bly positive, and HE staining showed clear cell nucleus and cytoplasm. The I collagen immunohistochemical staining showed negative results in the 1st passage, but II collagen immunohistochemical staining and safranin O staining showed positive results. However, the I collagen immunohistochemical staining showed positive result in the 2nd passage, and II collagen immunohistochemical staining and safranin O staining showed weakly positive results. The cell growth curve showed the same as the growth course of cell cultured in vitro. The results of TEM showed that there were many glycogen particles and less chondriosomes in the primary passage. With the increased passage, the glycogen particles decreased and the chondriosomes increased, and cell organ became swell. Conclusion This study clarifies the biological feature of NPCs in vitro, providing the experimental basis for the seed cell research of the nuclues pulposus tissue.

    Release date:2016-09-01 09:17 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON DIFFERENTIATION OF ADULT MARROW MESENCHYMAL STEM CELLS INTO VASCULAR ENDOTHELIAL CELLS IN VITRO

    Objective To study the differenation of adult marrow mesenchymal stem cells(MSCs) into vascular endothelial cells in vitro and to explore inducing conditions. Methods MSCs were isolated from adult marrow mononuclear cells by attaching growth. MSCs were divided into 4 groups to induce: the cells seeded at a density of 5×103/cm2 in 2% and 15% FCS LDMEM respectively (group1 and group 2), at a density of 5×104/cm2 in 2% and 15% FCS LDMEM respectively (group 3 and group 4); vascular endothelial growth factor(VEGF) supplemented with Bovine pituitary extract was used to induce the cell differentiation. The differentiated cells were identified by measuring surfacemarks (CD34, VEGFR2, CD31 and vWF ) on the 14th day and 21st day and performed angiogenesis in vitroon the 21st day.The cell proliferation index(PI)of different inducing conditions were measured. Results After induced in VEGF supplemented with Bovine pituitary extract, the cells of group 3 expressed the surface marks CD34, VEGFR-2, CD31 and vWF on the 14th day, the positive rates were 8.5%, 12.0%, 40.0% and 30.0% respectively, and on the 21st day the positive ratesof CD34 and VEGFR2 increased to 15.5% and 20.0%, while the other groups did not express these marks; the induced cells of group 3 showed low proliferating state(PI was 10.4%) and formed capillary-like structure in semisolid medium. Conclusion Adult MSCs can differentiate into vascular endothelial cellsafter induced by VEGF and Bovine pituitary extract at high cell densities and low proliferatingconditions,suggesting that adult MSCs will be ideal seed cells forthe therapeutic neovascularization and tissue engineering.

    Release date:2016-09-01 09:19 Export PDF Favorites Scan
  • EXPERIMENTAL STUDIES ON CANINE BLADDER SMOOTH MUSCLE CELLS CULTURED O N ACELLULAR SMALL INTESTINAL SUBMUCOSA IN VITRO

    Objective To explore an effective method of culturing the canine bladder smooth muscle cells, observe the morphological characteristics of the bladder smooth muscle cells growing on acellular small intestinal submucosa(SIS) and offer an experimental basis for reconstruction of the bladder smooth muscle structure by the tissue engineering techniques. Methods The enzymetreatment method and the explant method were respectively used to isolate and harvest the canine bladder smooth muscle cells, and then a primary culture of these cells was performed. The canine bladder smooth musclecells were seeded on the SIS scaffold, and the composite of the bladder smooth muscle cells and the SIS scaffold were co cultured for a further observation. At 5,7 and 9 days of the co culture, the specimens were taken; the bladder smooth muscle cells growing on the SIS scaffold were observed by the hematoxylin staining, the HE staining, and the scanning electron microscopy. The composite of the bladder smooth muscle cells on the SIS scaffold was used as the experimental group, and the bladder smooth muscle cells with no SIS were used as the control group. In each group, 9 holes were chosen for the seeded bladder smooth muscle cells, and then the cells were collected at 3, 5 and 7 days for the cell counting after the enzyme treatment. Morphological characteristics of the cells were observed under the phase contrast microscope and the transmission electron microscope. Expression of the cell specific marker protein was assessed by the immunohistochemical examinaiton. The proliferation of the cells was assessed by the cell counting after the seeding on the SIS scaffold. Results The primary bladder smooth muscle cells that had been harvested by the enzyme treatment method were rapidly proliferated, and the cells had good morphological characteristics. After the primary culture in vitrofor 5 days, the bladder smooth muscle cells grew in confluence. When the bladder smooth muscle cells were seeded by the explant method, a small amount of the spindleshaped bladder smooth muscle cells emigrated from the explant at 3 days. The cells were characterized by the welldeveloped actin filaments inthe cytoplasm and the dense patches in the cell membrane under the transmissionelectron microscope. The immunohistochemical staining showed the canine bladdersmooth muscle cells with positive reacting α actin antibodies. The bladder smooth muscle cells adhered to the surface of the SIS scaffold, growing and proliferating there. After the culture in vitro for 5 days, the smooth muscle cells covered all the surface of the scaffold, showing a singlelayer cellular structure. The cell counts at 3, 5 and 7 days in the experimental group were(16.85±0.79)×105,(39.74±2.16)×105 and (37.15±2.02)×105, respectively. Thecell counts in the control group were(19.43±0.54)×105,(34.50±1.85)×105 and (33.07±1.31)×105, respectively. There was a significant difference between the two groups at 5 days (P<0.05). ConclusionWith the enzyme treatment method, the primarily cultured canine bladder smooth muscle cells can produce a great amount of good and active cells in vitro. The acellular SIS can offer an excellent bio scaffold to support the bladder smooth muscle cells to adhere and grow, which has provided the technical foundation for a further experiment on the tissue engineered bladder reconstruction. 

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • URETHRAL EPITHELIUM CULTURE BY USING L929 CELLS AS TROPHODERM IN VITRO

    OBJECTIVE: To study the technique and method of urethral epithelium culture in vitro, so as to lay the groundwork for reconstructing a tissue engineering urethra and to provide an experimental model of urethral mucosa in physiological, pathological, toxicological and microbiological study. METHODS: The urethral mucosa from a young male New Zealand hare that had just been out of milk, was digested into single cell liquid with Dispase II and mixed enzyme, and the fibroblast were removed. After being seeded, the cells were cultured by using L929 cells as trophoderm. The medium was changed regularly and the cells were subcultured when they grew to mix together 80% to 90%. The cultured cells were analyzed with histochemistry, immunohistochemistry dyeing and flow cytometry examination. We observed the ultrastructure of cells with scanning electron microscope and transmission electron microscope. RESULTS: The primary cultured cells fused when they had been cultured for about ten days. They were the same in size like road rocks. The cultured cells were all epithelial cells without fibroblasts and were diploid cells. The cells could be subcultured 11-13 generations, and could survive 50-60 days. CONCLUSION: The urethral epithelium of young New Zealand hare can be cultured in vitro and maintain the ability to proliferate within a certain time. The study result not only sets a role in reconstructing a tissue engineering urethral mucosa, but also provides an experimental model for the research of urethral mucosa in vitro.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • THE PROLIFERATION AND DIFFERENTIATION OF PRIMARY HUMAN EMBRYONIC SKELETAL MYOBLASTS

    OBJECTIVE: To observe the proliferation and differentiation properties of primary human embryonic skeletal myoblasts cultured in vitro. METHODS: The skeletal muscle samples were obtained from 20 to 25-week abortion fetus, the family history of inherited myopathies of parental generation was negative. With a modified method of Blau, the muscle sample was digested with trypsin and collagenase. The isolated cell suspension was a mixture of myoblasts and fibroblasts, the latter was removed by repeated attachment to culture dishes. The morphological, immunohistochemical observation, the proliferation and differentiation of primary myoblasts were studied. RESULTS: The isolated myoblasts were spherical in cell suspension and spindle-like after attached to culture dishes. The myosin specialized immunohistochemical staining was bly positive. A large quantity of skeletal muscle specialized creatine kinase (CK-MM) was synthesized in cultured myoblasts. Additionally, while the cell density of myoblasts increased, the monocyte myoblasts would fused to form multinucleated myotube. All those indicated that the cultured cells were myoblasts. Primary myoblasts proliferated quickly, the doubling time, measured in growth curve, was 4.8 days. CONCLUSION: A large number of myoblasts can be available with digestion and repeated attachment method. The cultured cells can be proved as myoblasts by morphological and immunohistochemical detection. The cultured myoblasts have good ability of proliferation and differentiation.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • CULTURE OF THE TRANSFORMED HUMAN EMBRYONIC TENDON CELLS AND ITS BIOLOGICAL CHARACTERISTICS IN VITRO

    OBJECTIVE This paper was to study the biological characteristics of the transformed human embryonic tendon cells, the relation between cell growth and culture conditions, and to compare these features with that of human embryonic tendon cells. METHODS The pts A58H plasmid had successfully used to transform a tendon cell line from human embryo in our past work. The human embryonic tendon cells and the transformed human embryonic tendon cells were cultured in vitro. In different culture conditions, the growth curve were drawn respectively. Population dependence and proliferation capability of the cells were investigated through plate cloning test and soft agar culture. The collagen secreted by cells was identified by immunohistochemical method. RESULTS In routine culture condition, the growth properties of the human embryonic tendon cell and transformed cells were almost identical. The growth properties of the transformed cells were not changed when the cells were frozen storage. There were changes of growth characteristics of the transformed cells when the culture temperature was changed. The transformed cells could subcultured continually and permanently. The proliferation capability of the transformed cells were ber than that of the human embryonic tendon cells. Moreover, the growth of the transformed cells was serum-dependent, and the phenomenon of contact inhibition was observed. The transformed cells were not able to grow on soft agar culture. They had the capacity of secreting collagen type I. CONCLUSION The transformed human embryonic tendon cells could be subcultured continually and permanently, and their growth could be controlled by changing their culture conditions and they had no malignant tendency in biological characteristics. They could be taken as an ideal experimental material for tendon engineering.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • THE EFFECT OF BLOCKING INSULIN-LIKE GROWTH FACTOR-1 (IGF-1)RECEPTOR SYSTEM ON TENDON CELL PROLIFERATION

    The purpose of this study was to find some solutions to the problem of tendon cell proliferation control. Under the condition of in vitro culture, several materials including IGF-1 receptor antibody and mRNA antisense oligonucleotide were added to the culture medium to block the IGF-1-Receptor system. The effect of the material on the tendon cell proliferation was judged by cell count after incubation of 48 hours. The results showed that both IGF-1 Receptor antibody (IGF-1R alpha) and IGF-1 Receptor mRNA antisense oligonucleotide had negative effect on tendon cell proliferation (P lt; 0.01 and P lt; 0.05). These findings lead us to think that the above two materials could be used in the experiment of tendon adhesion preventing and living ready-made tendon producing.

    Release date:2016-09-01 11:07 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content