Objective To investigate whether combining use of platelet-rich plasma (PRP) and decalcified bone matrix (DBM) has synergistic action on promoting bone consol idation and heal ing. Methods Forty male New Zealand rabbits (weighing 2.2-2.8 kg) were randomly divided into 4 groups (n=10). The whole blood was extracted from the central aural artery and PRP was prepared with the Landesberg’s method. An 1 cm-defect was made below the tibiofibular joint of the lefttibia through osteotomy. In group A, defect was repaired by distraction osteogenesis (1 cm); in group B, defect was repaired with 0.5 cm DBM and then by distraction osteogenesis (0.5 cm); in group C, defect was repaired by distraction osteogenesis (1 cm) and local injection of 1 mL PRP; in group D, defect was repaired by 0.5 cm DBM combined with 1 mL PRP and then by distraction osteogenesis (0.5 cm). Then lengthening started at 7 days after operation, at a rate of 1 mm/day and 0.5 mm every time for 10 days (groups A and C) or for 5 days (groups B and D). After the lengthening, the consolidation was performed. The X-ray films were taken at 0, 12, 17, 27, and 37 days after operation. At 37 days after operation, the tibial specimens were harvested for Micro-CT scanning, three-dimensional reconstruction and biomechanical test. Results The X-ray films showed that new bone formation in groups B and C was obviously better than that in groups A and D at 37 days. The bone mineral density (BMD), bone mineral content (BMC), and bone volume fraction (BVF) of groups B and C were significantly higher than those of groups A and D (P lt; 0.05); the BMD and BMC of group C were significantly higher than those of group B (P lt; 0.05); the BVF had no significant difference between groups B and C (P gt; 0.05). There was no significant difference in BMD, BMC, and BVF between groups A and D (P gt; 0.05). The trabecula number (Tb.N) of group C was significantly more than that of other groups (P lt; 0.05), and the trabecula spacing (Tb.Sp) of group C was significantly smaller than that of other groups (P lt; 0.05), but no significant differencewas found among other groups (P gt; 0.05). There was no significant difference in the trabecula thickness among 4 groups (P gt; 0.05). The ultimate angular displacement had no significant difference among 4 groups (P gt; 0.05). The maximum torque of groups B and C was significantly higher than that of groups A and D (P lt; 0.05); the maximum torque of group C was significantly higher than that of group B (P lt; 0.05); no significant difference was found between groups A and D (P gt; 0.05). Conclusion In the rabbit bone defect/lengthening model, local injection of PRP can enhance bone consol idation effectively during consol idation phase. In normal distraction rate, DBM can promote bone consol idation during distraction osteogenesis. In the early stage of distraction osteogenesis, combining use of DBM and PRP can not further promote bone consolidation and healing.
Objective Tissue engineered bone (TEB) lacks of an effective and feasible method of storage and transportation. To evaluate the activity of osteogenesis and capabil ity of ectopic osteogenesis for TEB after freeze-dried treatment in vitro and in vivo and to explore a new method of preserving and transporting TEB. Methods Human bone marrow mesenchymal stem cells (hBMSCs) and decalcified bone matrix (DBM) were harvested from bone marrow and bone tissue of the healthy donators. TEB was fabricated with the 3rd passage hBMSCs and DBM, and they were frozen and dried at extremely low temperatures after 3, 5, 7, 9, 12, and 15 days of culture in vitro to obtain freeze-dried tissue engineered bone (FTEB). TEB and FTEB were observed by gross view and scanning electron microscope (SEM). Western blot was used to detect the changes of relative osteogenic cytokines, including bone morphogenetic protein 2 (BMP-2), transforming growth factor β1 (TGF-β1), and insul in-l ike growth factor 1 (IGF-1) between TEB and FTEB. The ectopic osteogenesis was evaluated by the methods of X-ray, CT score, and HE staining after TEB and FTEB were transplanted into hypodermatic space in athymic mouse. Results SEM showed that the cells had normal shape in TEB, and secretion of extracellular matrix increased with culture time; in FTEB, seeding cells were killed by the freeze-dried process, and considerable extracellular matrix were formed in the pore of DBM scaffold. The osteogenic cytokines (BMP-2, TGF-β1, and IGF-1) in TEB were not decreased after freeze-dried procedure, showing no significant difference between TEB and FTEB (P gt; 0.05) except TGF-β1 15 days after culture (P lt; 0.05). The ectopic osteogenesis was observed in TEB and FTEB groups 8 and 12 weeks after transplantation, there was no significant difference in the calcified level of grafts between TEB and FTEB groups by the analysis of X-ray and CT score. On the contrary, there was no ectopic osteogenesis in group DBM 12 weeks after operation. HE staining showed that DBM scaffold degraded and disappeared 12 weeks after operation. Conclusion The osteogenic activity of TEB and FTEB is similar, which provides a new strategy to preserve and transport TEB.