Objective To investigate the preventive and therapeutic effects and the mechanisms of pyrrol idine dithiocarbamate (PDTC) on the atrophy of denervated skeletal muscle. Methods Thirty adult Wistar rats of either gender, weighing (200 ± 10) g were randomly divided into 3 groups: group A (n=6, control group), group B (n=12, denervation group), and group C (n=12, PDTC treatment group). The sciatic nerves of the rats were only exposed without cutting off in group A, and the rats were made denervated gastrocnemius models in groups B and C. PDTC of 100 mg/(kg•d) was injected peritoneally in group C and an intraperitoneal injection of the same amount normal sal ine was given in group B. After 14 and 28 days, the gastrocnemius was harvested to measure the ratio of muscle wet weight; the levels of nuclear factor of κB (NF-κB)p65 protein and the opening of the mitochondrial permeabil ity transition pore (MPTP) in the gastrocnemius were detectedrespectively by Western blot and laser confocal scanning microscope; and the apoptotic cells in atrophic muscle were measured with TUNEL. Results The ratio of muscle wet weight in group A was 1.039 ± 0.115, and it significantly decreased in groups B and C (P lt; 0.05); after 14 and 28 days of operation, the ratio of muscle wet weight in group C significantly increased when compared with those in group B (P lt; 0.05). The expression of NF-κB p65 protein in group A was 0.224 ± 0.041; the expressions of NF-κB p65 in groups B and C significantly increased when compared with that in group A (P lt; 0.05); however, the expression of NF-κB p65 in group C was significantly lower than that in group B (P lt; 0.05). The MPTP fluorescence intensity in group A was 31.582 ± 1.754; the MPTP fluorescence intensity was significantly lower in groups B and C than in group A (P lt; 0.05), and the MPTP fluorescence intensity in group C was significantly higher than that in group B (P lt; 0.05). The rate of apoptosis in group A was 4.542% ± 0.722%; after 14 and 28 days of operation, the rates of apoptosis significantly increased when compared groups B and C with group A, and signiticantly decreased when compared group C with group B (P lt; 0.05). Conclusion PDTC can retard denervated skeletal muscle atrophy, and the effect may have a relationship with its inhibition on NF-κB, the opening of the MPTP, and the ratio of apoptosis.
Objective To investigate the effect of exogenous erythropoietin (EPO) on the denervated muscle atrophy. Methods Twenty-four SD male rats, weighting 200-220 g were made the models of denervated gastrocnemius muscle after sciatic nerves were transected under the piriform muscle at the right lower leg, and were randomly divided into two groups (n=12). rhEPO (2 500 U/kg) was injected daily into the denervated gastrocnemius muscle in EPO group, and normal sal ine was injected into the denervated gastrocnemius muscle in control group. To observe the general state of health of the experimental animal, the muscle wet weight, the muscle cell diameter, the cross section area, the protein amount, thepercentage of the apoptotic muscle cells, and the Na+-K+-ATPase and Ca2+-ATPase activities were measured 2 and 4 weeks after operation. Results All experimental animals were survived during experiment without cut infection, and all animals could walk with pull ing the right knee. At 4 weeks after operation, 7 cases showed ulcer in the right heel, inculding 5 in the control group and 2 in the EPO group. At 2 and 4 weeks after operation, the muscle wet weight in EPO group was (885.59 ± 112.35) and (697.62 ± 94.74) g, respectively; in control group, it was (760.63 ± 109.05) and (458.71 ± 58.76) g, respectively; indicating significant differences between two groups (P lt; 0.01). The protein amount in EPO group was (77.37 ± 5.24) and (66.37 ± 4.87) mg/mL, respectivly;in control group, it was (65.39 ± 4.97) and (54.62 ± 6.32) mg/mL;indicating significant differences between two groups (P lt; 0.01). At 2 and 4 weeks after operation, the myofibrillar shapes were nearly normal in EPO group while there were muscle fiber atrophy, some collapse and obviously hyperblastosis between muscle bundle. There were significant differences in the muscle cell diameter and the cross section between two groups (P lt; 0.01). However, the percentage of the apoptotic muscle cells was 11.80% ± 1.74% and 28.47% ± 1.81% in control group, respectively, which was significantly smaller than that in EPO group (21.48% ± 2.21% and 55.89% ± 2.88%, P lt; 0.01). At 2 and 4 weeks after operation, Na+-K+-ATPaseand Ca2+-ATPase activities in EPO group were higher than those in control group (P lt; 0.01). Conclusion EPO can delay the denervated muscle atrophy.
To explore the role of cell apoptosis in denervated skeletal muscle atrophy in rats and the effect of losartan on it. Methods Forty-two Sprague Dawley rats were randomly divided into 3 groups: group I (n =14, normal control group), group II (n =14, denervated group) and group III (n =14, losartan group). The rats were not treated in group I, and were made denervated gastrocnemius models in groups II and III. In group III, the rats were treated with losartan 10 mg /kg• d by gavage and with normal sal ine in groups I and II. After 4 weeks, gastrocnemius mass to body mass ratio (GAS/BM) served as the degree of muscle atrophy. Apoptotic cells in gastrocnemius were stained in situ by using TUNEL. Gastrocnemius Bcl-2 and Bax protein were quantified by immunohistochemistry and Western blot. Bax /Bcl-2 served as the degree of apoptosis. Results The ratio of apoptosis was higher in group II than that in group I (11.32% ± 4.51% vs 0.56% ± 0.21%, P lt; 0.05). The ratio of apoptosis was lower in group III than that in group II (7.21% ± 2.05% vs 11.32% ± 4.51%, P lt; 0.05). The atrophy of skeletal muscle(GAS/BM) in group II was more serious than that in group I (11.68 ± 1.98 vs 12.86 ±0.74, P lt; 0.05), there was no significant difference between group III and group II (12.11 ± 0.65 vs 11.68 ± 1.98, P gt; 0.05). The expression of Bcl-2 in group II (18.3% ± 4.9%) was significantly lower than that in group I (27.5% ± 2.8%) and group III (25.5% ± 3.5%); there was no significant difference between group III and group I (P gt; 0.05). The expression of Bax in group II (24.1% ± 3.1%) was significantly higher than that in group I (22.1% ± 3.6%) and group III (21.7% ± 2.3%); there was no significant difference between group III and group I (P gt; 0.05). Western blot results showed that: the expressions of Bcl-2 were 122.5 ± 14.6 in group II, 135.3 ± 6.2 in group I and 139.2 ± 16.2 in group III; showing significant diffeerences between group II and group I, between group III and group II (P lt;0.05). The expressions of Bax were 107.1 ± 15.8 in group II, 89.3 ± 8.4 in group I, and 94.2 ± 9.5 in group III; showing significant diffeerences between group II and group I, between group III and group II (P lt; 0.05). There was no significant difference in the expression of Bcl-2 and Bax between group Ⅲ and group I (P gt; 0.05). Conclusion Cell apoptosis plays an important role in denervated skeletal muscle atrophy in rats and may be one of the factors causing skeletal muscle atrophy. Losarton can decrease skeletal muscle cell apoptosis through regulating the ratio of Bax / Bcl-2.
Objective To investigate the effect of bFGF on denervated skeletal muscle in accelerating muscle satell ite cell prol iferation, supplying neurotrophic factors and reducing muscle atrophy. Methods Twenty-eight Wistar male rats weredivided into the experimental group and the control group randomly, whose left lower l imb sciatic nerve was excised to make animal models of denervated skeletal muscle. The sil ia gel tubes containing 0.1 g bFGF and normal sal ine were implanted into gastrocnemius in the experimental and control groups, respectively. After 14 and 30 days of operation, gross appearance was observed; muscle wet weight and potential ampl itude of gastrocnemius fibrillation were measured; histological observation and electron microscope observation were made. Results At 14 and 30 days after operation, gastrocnemius atrophy and adhesion were more obvious in the control group than those in the experimental group. At 30 days after operation, the potential amplitude of gastrocnemius fibrillation and muscle wet weight were experimental group (0.220 6 ± 0.301 0) μm and (2.475 7 ± 0.254 6) g in the experimental group, and (0.155 2 ± 0.050 3) μm and (1.459 1 ± 0.642 5) g in the control group. There was a significant difference between two groups (P lt; 0.05). At 14 and 30 days after operation, HE staining showed more muscle satell ite cell nucleiin gastrocnemius of the experimental group than that of the control group; Mallory staining showed more blue connective tissues in the control group than in the experimental group; PCNA staining showed more PCNA positive cell nuclei in the experimental group than in the control group; and the AgNO3 staining testified more grains of vitamin C and less connective tissue proliferation in the experimental group than in the control group. At 30 days after operation, the fiber diameter and the fiber area were (66.368 6 ± 12.672 7) μm and (2 096.112 9 ± 311.563 9) μm2 in the experimental group, (55.504 0 ± 4.945 0) μm and (1 418.068 0 ± 264.953 7) μm2 in the control group. The PCNA positive cell nuclei number was 116.200 ± 5.357 in the experimental group and 53.000 ± 3.937 in the control group, showing statistically significant difference between the two groups (P lt; 0.05). At 14 and 30 day after operation, ompared with control group, the muscle fiber in the experimental group arrangedly more regularly and had lessatrophy fiber and the connective tissue proliferation. Conclusion bFGF can stimulate the proliferation of muscle satell ite cells in denervated gastrocnemius, delay the muscle fiber atrophy and inhibit connective tissues proliferation in muscle fibers.
Objective To investigate the delay of the denervated skeletal muscle atrophy with the method of restraining the increment of the connective tissues by tetrandrine and hormone. Methods The left hind limbs of 42 male adult SD rats were made into models of the denervated gastrocnemius, and then the rats were randomly divided into 3 groups, with 14 rats in each. In Group A, tetrandrine (8 mg/L)was injected into the denervated gastrocnemius; in Group B, triamcinolone acetonide(1.6 g/L) was injected; in Group C (the control group),normal saline was injected. Enough samples were obtained according to the different observation indexes at 30 days after operation. Electromyography, muscle wet weight measurement, light microscopy,electron microscopy,and microimage analysis were performed. ResultsThe fibrillation potential amplitude was 0.195 8±0.041 9 μV in Group A and 0.185 2±0.050 3 μV in Group B, and there was no significant difference betweenthe two groups (Pgt;0.05). However,in Group C the fibrillation potential amplitude was 0.137 7±0.058 9μV. The fibrillation potential amplitude was significantly greater in Group A than in Group C(Plt;0.05). The muscle wet weight was 1.740 0±0.415 9 g in Group A and 1.940 1±0.389 4 gin Group B, and there was no significant difference between the two groups(Pgt;0.05).However, in Group C the muscle wet weight was 0.800 0±0.100 0 g. The muscle wet weight was significantly greater in Group A than in Group C(Plt;0.05).The microscopy showed that more remarkable atrophy occurred in the control group. The muscle fibers were more complete, thicker and larger, with more nuclei and clearer cross-lines. More connective tissue and flat cells could be observed in Groups A and B. The myogenic protein amount was 440.124 2±46.135 6 in Group A and 476.211 4±41.668 8in Group B, and there was no significant difference between the two groups(Pgt;0.05).However, in Group C the amount was 380.040 0±86.315 9.The myogenic protein amount was significantly greater in Group A thanin Group C(Plt;0.05). The muscle fiber number, diameter, cross section, and connective tissue increment were all significantly greater in Group A than in Group C(Plt;0.05); however, there wasno significant difference between Groups A and B (Pgt;0.05). The electron microscopy showed that there were more degeneration changes, such as muscle silk disorder, chondriosome disappearance, and hepatin reduction, could be observed inGroup C than in Groups A and B. Conclusion Tetrandrine and hormone can delay the denervated skeletal muscle atrophy by restraining the increment of the connective tissues.
Objective To investigate the result of free vascular transplantation of denervated extensor digitorum brevis and extensor hallusis brevisfor the treatment of late facial paralysis. Methods From April 2003 to April 2005, 26 cases of facial paralyces were treated by transplantation of denervated extensor digitorum brevis and extensor hallusis brevis. During operation, the ends of the tendons were fixed at ala nasi, middle point of nasal labial fold,oral commisure and chin; the muscle belly were put around the masseter nerveto correct the nasal and oral deformity, microsurgery was applied to anastomosethe tarsus lateral vessels to the superficial temporalis vessels or the facial vessels. The result of the operation was evaluated by the Standard of Douglas Harrison and the Paresis Assessment scoring system of Stennert. Results The static appearance was satisfactory in 26 cases after operation, the bilateral oral commisure was symmetry and the dynamic appearance was greatly improved 6 months after operation. Among the 23 cases whose disease history was above 2 years,all could smile naturally and show their teeth symmetrically except 1 case whocould only move the oral commissure. Among the 3 cases whose disease history was less than 2 years, one could smile naturally and show his teeth symmetrically, one could smile but could not show his teeth symmetrically, another could move oral commissure but have no motion appearance. The result was evaluated as“” according to Standard of Douglas Harrison, accounting for 88% (23/26). Evaluated according to the Paresis Assessment scoring system of Stenert, the difference before operation and after operation was more than 5, accounting for 86% (22/26). Conclusion The free vascular transplantation of denervated extensor digitorum brevis and extensor halluces brevis can reconstruct the oral appearance for the treatment of late facial paralysis.
OBJECTIVE: To study the influence of the electric stimulation of denervated muscle atrophy. METHODS: Sixteen SD rats were made the model of denervated skeletal muscle in two lower limbs by cutting off the sciatic nerve and femoral nerve. The right gastrocnemius muscle was stimulated with JNR-II nerve amp; muscle recovery instrument by skin as the experimental side and the left was not treated as the control side. The muscle histology, ultrastructure, fibrillation potential amplitude, Na(+)-K(+)-ATPase and Ca(2+)-ATPase activities were observed 2 weeks and 4 weeks after operation. RESULTS: Electric stimulation could protect mitochondria and sarcoplasmic reticulum from the degeneration. The reduction rates of muscle cell diameter and cross section in the experimental side were slower significantly than those in control side. There was no influence on fibrillation potential amplitude in the both sides after electric stimulation. The reduction rates of Na(+)-K(+)-ATPase activity in the experimental side were slower 15.59% and 27.38% respectively than those in the control side. The reduction rates of Ca(2+)-ATPase activity in the experimental side were slower 4.83% and 21.64% respectively than those in the control side. CONCLUSION: The electric stimulation can protect muscle histology, electrophysiology and enzymic histochemistry of denervated skeletal muscle from the degeneration. The electric stimulation is an effective method to prevent and treat muscle atrophy.
OBJECTIVE In order to provide the scientific basis to find out a practical and effective method to evaluate the degree of muscle atrophy and a better method of prevention and treatment of skeletal muscle atrophy. METHODS Forty-two adult Spray-Dawley rats were used and the model of denervated gastrocnemius muscle was established by cutting off the tibial nerve. The muscle wet weight, diameter and cross section area of myocyte were measured. The motor end-plate, fibrillation potential amplitude and frequency of denervated skeletal muscle were observed. RESULTS The muscle wet weight rapidly reduced within 4 weeks. Afterwards, it maintained about 30 per cent of normal value, and the diameter and cross section area of myocyte progressively reduced. The motor end-plate slightly changed within 4 weeks, but its degeneration accelerated in 6 weeks and disappeared after 16 weeks. The fibrillation potential amplitude was maximum at 2 weeks and it progressively reduced after 12 weeks of muscle denervation. The changes of amplitude and frequency were consistent with the degeneration of end-plate. CONCLUSION The muscle wet weight, diameter and cross section area of myocyte, fibrillation potential amplitude and frequency could be considered as the morphological and electrophysiological indexes of muscle atrophy degree. It’s suggested that the repairing operation of peripheral nerve should be performed before the disappearance of motor end-plate.