Objective To investigate the effect of exogenous erythropoietin (EPO) on the denervated muscle atrophy. Methods Twenty-four SD male rats, weighting 200-220 g were made the models of denervated gastrocnemius muscle after sciatic nerves were transected under the piriform muscle at the right lower leg, and were randomly divided into two groups (n=12). rhEPO (2 500 U/kg) was injected daily into the denervated gastrocnemius muscle in EPO group, and normal sal ine was injected into the denervated gastrocnemius muscle in control group. To observe the general state of health of the experimental animal, the muscle wet weight, the muscle cell diameter, the cross section area, the protein amount, thepercentage of the apoptotic muscle cells, and the Na+-K+-ATPase and Ca2+-ATPase activities were measured 2 and 4 weeks after operation. Results All experimental animals were survived during experiment without cut infection, and all animals could walk with pull ing the right knee. At 4 weeks after operation, 7 cases showed ulcer in the right heel, inculding 5 in the control group and 2 in the EPO group. At 2 and 4 weeks after operation, the muscle wet weight in EPO group was (885.59 ± 112.35) and (697.62 ± 94.74) g, respectively; in control group, it was (760.63 ± 109.05) and (458.71 ± 58.76) g, respectively; indicating significant differences between two groups (P lt; 0.01). The protein amount in EPO group was (77.37 ± 5.24) and (66.37 ± 4.87) mg/mL, respectivly;in control group, it was (65.39 ± 4.97) and (54.62 ± 6.32) mg/mL;indicating significant differences between two groups (P lt; 0.01). At 2 and 4 weeks after operation, the myofibrillar shapes were nearly normal in EPO group while there were muscle fiber atrophy, some collapse and obviously hyperblastosis between muscle bundle. There were significant differences in the muscle cell diameter and the cross section between two groups (P lt; 0.01). However, the percentage of the apoptotic muscle cells was 11.80% ± 1.74% and 28.47% ± 1.81% in control group, respectively, which was significantly smaller than that in EPO group (21.48% ± 2.21% and 55.89% ± 2.88%, P lt; 0.01). At 2 and 4 weeks after operation, Na+-K+-ATPaseand Ca2+-ATPase activities in EPO group were higher than those in control group (P lt; 0.01). Conclusion EPO can delay the denervated muscle atrophy.
OBJECTIVE: To study the influence of the electric stimulation of denervated muscle atrophy. METHODS: Sixteen SD rats were made the model of denervated skeletal muscle in two lower limbs by cutting off the sciatic nerve and femoral nerve. The right gastrocnemius muscle was stimulated with JNR-II nerve amp; muscle recovery instrument by skin as the experimental side and the left was not treated as the control side. The muscle histology, ultrastructure, fibrillation potential amplitude, Na(+)-K(+)-ATPase and Ca(2+)-ATPase activities were observed 2 weeks and 4 weeks after operation. RESULTS: Electric stimulation could protect mitochondria and sarcoplasmic reticulum from the degeneration. The reduction rates of muscle cell diameter and cross section in the experimental side were slower significantly than those in control side. There was no influence on fibrillation potential amplitude in the both sides after electric stimulation. The reduction rates of Na(+)-K(+)-ATPase activity in the experimental side were slower 15.59% and 27.38% respectively than those in the control side. The reduction rates of Ca(2+)-ATPase activity in the experimental side were slower 4.83% and 21.64% respectively than those in the control side. CONCLUSION: The electric stimulation can protect muscle histology, electrophysiology and enzymic histochemistry of denervated skeletal muscle from the degeneration. The electric stimulation is an effective method to prevent and treat muscle atrophy.
OBJECTIVE In order to provide the scientific basis to find out a practical and effective method to evaluate the degree of muscle atrophy and a better method of prevention and treatment of skeletal muscle atrophy. METHODS Forty-two adult Spray-Dawley rats were used and the model of denervated gastrocnemius muscle was established by cutting off the tibial nerve. The muscle wet weight, diameter and cross section area of myocyte were measured. The motor end-plate, fibrillation potential amplitude and frequency of denervated skeletal muscle were observed. RESULTS The muscle wet weight rapidly reduced within 4 weeks. Afterwards, it maintained about 30 per cent of normal value, and the diameter and cross section area of myocyte progressively reduced. The motor end-plate slightly changed within 4 weeks, but its degeneration accelerated in 6 weeks and disappeared after 16 weeks. The fibrillation potential amplitude was maximum at 2 weeks and it progressively reduced after 12 weeks of muscle denervation. The changes of amplitude and frequency were consistent with the degeneration of end-plate. CONCLUSION The muscle wet weight, diameter and cross section area of myocyte, fibrillation potential amplitude and frequency could be considered as the morphological and electrophysiological indexes of muscle atrophy degree. It’s suggested that the repairing operation of peripheral nerve should be performed before the disappearance of motor end-plate.