west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Differentiation" 63 results
  • EFFECT OF COREBINDING FACTOR α1 ON THE EXPRESSION OF OSTEOBLAST GENE MARKER MESENCHYMAL STEM CELLS

    Objective To study the effect of core-binding factor α1(Cbfa1)on the mesenchymal stem cells(MSCs) osteoblastic differentiation.Methods The MSCs were isolated from Japan white rabbits and cultured in vitro. The 3rd generation MSCs were infected with Cbfa1 recombinant adenovirus. The expression of Cbfa1 was detected by immunofluorescence after being infected for 3 days and the proliferation was estimated by MTT method from the 1st day to the 7th day. Then the MSCs were divided into four groups: the commonly cultured group, the simply induced group, the control adenovirus treatment group, and the Cbfa1 adenovirus treatment group. The expressions of mRNA for a various of osteoblast gene markers such as alkaline phosphatase, osteocalcin, osteopontin and type I collagen were analyzed based on reverse transcriptase polymerase chain reaction (RT-PCR). The change of adipose and myoblastic differentiation gene marker PPARγ2 and MyoD expression were detected by RT-PCR respectively.Results Positive staining of Cbfa1 was found in the MSCs infected with Cbfa1 adenovirus, and there was no significant difference in cell proliferation among the experimental groups(Pgt;0.05). The RT-PCR indicated that all the osteoblast gene markers except type I collagen were up-regulated in the Cbfa1 adenovirus treatment group. In contrast, the expressions of PPARγ2 and MyoD were restrained. Conclusion Cbfa1 can directly promote the differentiation of MSCs into osteoblasts. 

    Release date:2016-09-01 09:30 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON THE MYOGENIC DIFFERENTIATION OF MARROW MESENCHYMAL STEM CELLS IN THE LOCAL MUSCLE TISSUES

    Objective To investigate the myogenic differentiation of mesenchymal stem cells (MSCs) after being transplanted into the local muscle tissues. Methods The serious muscleinjured model was established by the way of radiation injury, incising, and freezing injury in 36 mouses. Purified MSCs derived from bone marrow of male mouse and MSCs induced by5-azacytidine(5-Aza-CR) were transplanted into the local of normal muscle tissues and injured muscle tissues of femal mouse. The quantity of MSCs and the myogenic differentiation of implanted MSCs were detected by the method of double labeling, which included fluorescence in situ DNA hybridization (FISH) and immuno-histochemistry on the 1st, 3rd, 6th, 9th, 12th, and 15th day after transplantation. Results The quantity of implanted MSCs decreased as timepassed. MSCs’ differentiation into myoblasts and positive expression of desmin were observed on the 15th day in purified MSCs group and on the 6th day in induced MSCs groups. Conclusion MSCs could differentiate into myoblasts after being implanted into the local of muscle tissues. The differentiationoccurs earlier in the induced MSCs group than that in purified MSCs group.

    Release date:2016-09-01 09:27 Export PDF Favorites Scan
  • EFFECT OF TITANIUM PARTICLES ON PROLIFERATION, DIFFERENTIATION, AND cytoMORPHOLOGY OF OSTEOBLASTS

    ObjectiveTo study the effect of titanium particles on the proliferation, differentiation, and cytomorphology of osteoblasts, and to explore the possible internal relations and mechanism. MethodsCalvarial osteoblasts were separated from 10 newborn Sprague Dawley rats by repeated enzyme digestion, and were cultured in vitro. The cells were identified by alkaline phosphatase (ALP) staining and alizarin red staining. The cells at passage 3 were cultured with titanium particles culture medium at concentrations of 0.01, 0.05, 0.1, 0.5, and 1 mg/mL (0.01, 0.05, 0.1, 0.5, and 1 mg/mL groups). The absorbance (A) values were detected by cell counting kit 8 at 7 days after cultured to compare the effect of titanium particles at different concentrations on proliferation, and median lethal concentration was screened out. The expression of collagen type I was detected by ELISA to observe the effect of titanium particles on differentiation. The osteoblasts co-cultured with titanium particles of median lethal concentration (experimental group) for 7 days, and double fluorescence staining with FITC-phalloidine and propidium iodide was performed. The cytomorphology variation of osteoblasts after swallowing titanium particles was observed under laser scanning confocal microscope. The osteoblasts at passage 3 cultured with culture medium without titanium particles served as control group. ResultsThe cultured cells were identified as osteoblasts by ALP staining and alizarin red staining. Different concentrations of titanium particles could inhibit osteoblasts proliferation and differentiation in varying degrees, showing significant difference when compared with the control group at 7 days after culture (P<0.05). The cell proliferation and differentiation were decreased with increased titanium particles concentration; significant differences were found between the other groups (P<0.05) except 0.01 and 0.05 mg/mL groups (P>0.05). The median lethal concentration of titanium particles was 0.5 mg/mL. Laser scanning confocal microscope showed cellular shrinking, microfilaments distortion, pseudopodia contraction of osteoblasts that swallowed titanium particles in the experimental group. ConclusionTitanium particles can inhibit proliferation and differentiation of osteoblasts. The effect may be related to variation of cytomorphology after swallowing titanium particles.

    Release date: Export PDF Favorites Scan
  • IDENTIFICATION OF PROPERTY OF NERVE FASCICLES BY PHYSICAL AND HISTOCHEMISTRY METHODS

    【Abstract】 Objective To explore a method to identify the sensory and motor fascicles in peri pheral nervetrunk. Methods Thirty Wistar rats were selected to obtain whole spine. The spinal gangl ion, its dorsal root and ventral root,and sciatic nerve were harvested, Annexin V and Agrin specificities were observed with Western blot. In the experimental group,anterior branch and posterior branch of spinal nerve, sciatic nerve, and its muscular branch and cutaneous branch were harvested from 15 rats to make the observation of immunohistochemistry. In the other 15 rats, first antibody was replaced by PBS as control group. Different nerve fascicles were studied with Micro Raman scattering technique in 16 12-month-old New Zealand rabbits. Results The Annexin V and Agrin were special substances of sensory and motor nerves respectively and can act as specific antigens for identifying different nerve fascicles. There were significant differences in the intensity and breadth of the peak of the spectral properties between motor and sensory fascicles at frequencies of 1 088, 1 276, 1 439, 1 579 and 1 659 cm-1 .The peak intensity ratios of 1 276 to 1 439 cm-1 were 0.95±0.06 in motor nerve fascicles and 1.17±0.08 in sensory fascicles, showing significant differences (P lt; 0.05). Conclusion The Micro Raman spectra is more effective than immunohistochemistry in identifying different nerve fascicles, and it possesses as feasibil ity for cl inical appl ication.

    Release date:2016-09-01 09:09 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF MESENCHYMAL STEM CELLS INDUCED TO DIFFERENTIATE INTERVERTEBRAL DISC CELLS

    Objective To review the study progress of mesenchymal stem cells induced to differentiate intervertebral disc cells Methods The recent related literature was reviewed. The theorical and experimental studies were summarized. Results MSCs had the potential of multidirectional differentiation.International experimental studies indicated the potential of MSCs induced to differentiate intervertebral disc cells. Conclusion MSCs induced to differentiate intervertebral disc cells has the fine prospect.

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • ISOLATION AND CULTURE OF NEURAL STEM CELLS IN INJURED REGION OF COMPRESSIVE SPINAL CORD INJURY IN ADULT RAT

    Objective To investigate the division, prol iferation and differentiation abil ities of nestin+/GFAP+cell after spinal cord injury and to identify whether it has the characteristic of neural stem cells (NSCs). Methods Twelvemale SD rats, aged 8 weeks and weighing 200-250 g, were randomized into 2 groups (n=6 per group): model group inwhich the spinal cord injury model was establ ished by aneurysm cl ip compression method, and control group in which no processing was conducted. At 5 days after model ing, T8 spinal cord segment of rats in each group were obtained and the gray and the white substance of spinal cord outside the ependymal region around central tube were isolated to prepare single cellsuspension. Serum-free NSCs culture medium was adopted to culture and serum NSCs culture medium was appl ied to induce differentiation. Immunohistochemistry detection and flow cytometry were appl ied to observe and analyze the type of cells and their capabil ity of division, prol iferation and differentiation. Results At 3-7 days after injury, the model group witnessed a plenty of nestin+/GFAP+ cells in the single cell suspension, while the control group witnessed few. Cell count of the model and the control group was 5.15 ± 0.71 and 1.12 ± 0.38, respectively, indicating there was a significant difference between two groups (P lt; 0.01). Concerning cell cycle, the proportion of S-phase cell and prol iferation index of the model group (15.49% ± 3.04%, 15.88% ± 2.56%) were obviously higher than those of the control group (5.84% ± 0.28%, 6.47% ± 0.61%), indicating there were significant differences between two groups (P lt; 0.01). In the model group, primary cells gradually formed threedimensional cell clone spheres, which were small in size, smooth in margin, protruding in center and positive for nestin immunofluorescence staining, and large amounts of cell clone spheres were harvested after multi ple passages. While in the control group, no obvious cell clone spheres was observed in the primary and passage culture of single cell suspension. At 5 days after induced differentiation of cloned spheres in the model group, immunofluorescence staining showed there were a number of galactocerebroside (GaLC) -nestin+ cells; at 5-7 days, there were abundance of β-tubul in III-nestin+ and GFAP-nestin+ cells; and at 5-14 days, GaLC+ ol igodendrocyte, β-tubul in II+ neuron and GalC+ cell body and protruding were observed. Conclusion Nestin+/GFAP+ cells obtained by isolating the gray and the white substance of spinal cord outside the ependymal region around central tube after compressive spinal cord injury in adult rat has the abil ity of self-renewal and the potential of multi-polarization and may be a renewable source of NSCs in the central nervous system.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • EFFECT OF PLATELETRICH PLASMA ON PROLIFERATION AND OSTEOGENIC DIFFERENTIATION OF BONE MARROW STEM CELLS IN CHINA GOATS

    Objective To explore the effect of the platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs) in China goat in vitro. Methods MSCs from the bone marrow of China goat were cultured. The third passage of MSCs were treated with PRP in the PRP group (the experimental group), but the cells were cultured with only the fetal calf serum (FCS) in the FCS group (the control group). The morphology and proliferation of the cells were observed by an inverted phase contrast microscope. The effect of PRP on proliferation of MSCs was examined by the MTT assay at 2,4,6 and 8 days. Furthermore, MSCs were cultured withdexamethasone(DEX)or PRP; alkaline phosphatase (ALP) and the calcium stainingwere used to evaluate the effect of DEX or PRP on osteogenic differatiation of MSCs at 18 days. The results from the PRP group were compared with those from the FCS group. Results The time for the MSCs confluence in the PRP group was earlier than that in the FCS group when observed under the inverted phase contrast microscope. The MTT assay showed that at 2, 4, 6 and 8 days the mean absorbance values were 0.252±0.026, 0.747±0.042, 1.173±0.067, and 1.242±0.056 in the PRP group, but 0.137±0.019, 0.436±0.052, 0.939±0.036, and 1.105±0.070 in the FCS group. The mean absorbance value was significantly higher in the PRP group than in the FCS group at each observation time (P<0.01). Compared with the FCS group, the positive-ALP cells and the calcium deposition were decreased in the PRP group; however, DEX could increase boththe number of the positiveALP cells and the calcium deposition. Conclusion The PRP can promote proliferation of the MSCs of China goats in vitro but inhibit osteogenic differentiation.

    Release date:2016-09-01 09:22 Export PDF Favorites Scan
  • EFFECT OF SODIUM HYALURONATE ON PROLIFERATION AND DIFFERENTIATION OF MYOBLAST INVITRO

    Objective To investigate the effects of sodium hyaluronate solution on the proliferation and differentiation of myoblasts. Methods The 3rd subculture myoblasts from muscle of infant SD rat were cultured in four growth media, in which the concentrations of sodium hyaluronate were 0.05% (group A) , 0.1%( group B), 0.2% (group C)and 0 (group D, control group), respectively. The proliferation rate of myoblasts in each medium was observed through growth curves by means of count and MTT. At the same time, the subculture myoblasts were cultured in differentiated media in which the concentrations of sodium hyaluronate were 0 and 0.1%. The capacity of fusion of myoblasts was compared between two kinds of differentiated media. Results There were the nearly same proliferation curse in Groups A, B and C: increasing by logarithm at 2 days and reaching peak value at 4 days. The myoblasts in Group D increased slowly: increasing by logarithm at 3 days, doubling at 5 days and reaching peak value at 6 days. MTT has the similar curse to counting. The myoblast proliferation of Group B was more than that of the other groups. The peak value of myoblast fusion was 35% at 6 days in common differentiated media; slowly reached 11.7% at 7 days in the differentiated media in which the concentrations of sodiumhyaluronate was 0.1%.Conclusion Sodium hyaluronate at certain concentration can be a decent media for myoblasts, it can accelerate proliferation and differentiation of myoblasts.

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
  • THE EFFECTS OF DEXAMETHASONE ON BIOLOGICAL CHARACTERISTICS OF BONE MARROW STROMAL CELLS

    OBJECTIVE: To investigate the effects of dexamethasone on the proliferation and differentiation of bone marrow stromal cells(MSC). METHODS: MSC were isolated and cultured in vitro. After treatment with different concentrations of dexamethasone (0, 10-10, 10-9, 10-8, 10-7 and 10-6 mol/L), the proliferation and alkaline phosphatase (ALP) activity of MSC were measured to evaluate the effect of dexamethasone on the biological characteristics of MSC. RESULTS: Dexamethasone inhibited cell proliferation. With the increase of concentration of dexamethasone, the effect was enhanced, which was more significant when the concentration of dexamethasone was over 10-8 mol/L. At the same time, dexamethasone promoted the activity of ALP. This effect was enhanced with the increase of concentration of dexamethasone, but the alteration was small when the concentration of dexamethasone was over 10-8 mol/L. The effects increased with the time. The activity of ALP was enhanced 2 to 4 times with the dexamethasone for 6 days. CONCLUSION: Dexamethasone inhabit the proliferation of MSC, while induce them to differentiate into osteoblasts. The appropriate concentration of dexamethasone was 10-8 mol/L.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • THE IN VITRO STUDY OF THE HUMAN ADIPOSE TISSUEDERIVED STROMAL CELLS DIFFERENTIATING INTO THE NEURONLIKE CELLS

    Objective To investigate the possibility of theadipose tissue-derived stromal cells(ADSCs) to differentiate into the neuron-like cells and to explore a new cell source for the transplantation related to the central nervous system. Methods Adipose was digested by collagenase, cultured in the fetal bovine serum containing a medium. Trypse was used to digest the cells and the cell passage was performed. The 3rd to the 9th passage ADSCs were used to make an induction. Isobutylmethylxanthine, indomethacin, insulin, and dexamethasone were used to induce the ADSCs to differentiate into the neuron-like cells and adipocytes. Sudan black B and immunocytochemistry were used to identify the cells. Results A population of the ADSCs could be isolated from the adult human adipose tissue, they were processed to obtain a fibroblast-like population of the cells and could be maintained in vitro for an extendedperiod with the stable population doubling, and they were expanded as the undifferentiated cells in culture for more than 20 passages, which indicated their proliferative capacity. They expressed vimentin and nestin, and characteristics of the neuron precursor stem cells at an early stage of differentiation. And the majority of the ADSCs also expressed the neuron-specific enolase and βⅢ-tubulin, characteristics of the neurons. Isobutyl-methyxanthine, indomethacin, insulin, and dexamethasone induced 40%-50% of ADSCs to differentiate into adipocytes and 0.1%0.2% of ADSCs into neuron-like cells. The neuron-like cells had a complicated morphology of the neurons, and they exhibited a neuron phenotype, expressed nestin, vimentin, neuron-specific enolase and βⅢ-tubulin, but some neuron-like cells also expressed thesmooth muscle actin (SMA), and the characteristics of the smooth muscle cells; however, the neurons from the central nervous system were never reported to express this kind of protein. Therefore, the neuron-like cells from the ADSCs could be regarded as functional neurons. Conclusion Ourresults support the hypothesis that the adult adipose tissue contains the stem cells capable of differentiating into the neuron-like cells, and they can overcome their mesenchymal commitment, which represents an alternative autologous stemcell source for transplantation related to the central nervous system.

    Release date:2016-09-01 09:26 Export PDF Favorites Scan
7 pages Previous 1 2 3 ... 7 Next

Format

Content