west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Disease models, animal" 2 results
  • Effects of retina on macromolecules diffusion after retinal vein occlusion

    Objective To observe the change of diffusion upper limit of macromol ecules through pathological retina and the difference between the layers of retina. Methods Retinal edema was emulated by establishing branch retinal vein occlusion (RVO) model in miniature pig eyes under photodynamic method. Two days later, the retinas of both eyeballs were peeled off. The diffusion test apparatus was designed by ourselves. FITC-dextrans of various molecular weights (4.4, 9.3, 19.6, 38.9, 71.2 and 150 kDa) and Carboxyfluorescein (376 Da) were dissolved in RPMI1640 solutions and diffused through inner or outer surface of retina. The rate of transretinal diffusion was determined with a spectrophotometer. Theoretical maximum size of molecule (MSM) was calculated by extrapolating the trend-linear relationship with the diffusion rate. In separate experiments to determine the sites of barrier to diffusion, FITC-dextrans were applied to either the inner or outer retinal surface, processed as frozen sections, and viewed with a fluores cence microscope. Results FITC-dextrans applying to inner retinal surface, 4.4 kDa dextrans were largely blocked by inner nuclear layer (INL); 19.6,71.2 kDa dextrans were blocked by the nerve fiber layer (NFL) and inner plexiform layer; 15.0 kDa dextrans were blocked by NFL. FITC-dextrans applying to outer retinal surface, most dextrans with various molecular weights were blocked before outer nuclear layer (ONL). No matter applying to the inner or outer surface, Carboxyfluore scein can diffuse through the whole retina and aggregate at INL and ONL. After RVO, the inner part of retina became edema and cystoid, loosing the barrier function. Compared with the normal retina, the MSM in RVO tissues increased (6.5plusmn;0 39nm Vs 6.18plusmn;0.54nm, t=4.143, P=0.0001). Conclusions A fter RVO, the barrier function of inner part of retinal is destroyed and the upper limit of diffusion macromolecule size increased, which is nevertheless limited. ONL acts as bottle-neck barriers to diffusion, if the outer part of retina is damaged, the change of the diffusion upper limit will be prominent. (Chin J Ocul Fundus Dis,2008,24:197-201)

    Release date:2016-09-02 05:46 Export PDF Favorites Scan
  • Protective effect of estrogen on rat′s retina injured by transient ischemia-reperfusion

    ObjectiveTo evaluate the protective effect of estrogen on survival of retinal ganglion cells (RGCs) after transient retinal ischemia-reperfusion (RIR) in rats.MethodsRIR was induced in 60 ovariectomized adult rats (OVX) by increasing intraocular pressure via an intracameral catheter. All of the rats were divided into two groups randomly: in experimental group, the rats underwent a subcutaneous injection with 17β-estrodiol(100 μg/kg) 2 hours before retinal ischemia; and in the control group, saline water was injected correspondingly. The number of RGCs and the thickness of the inner retinal layers were mesured by HE staining method before and 12, 24, 48, and 72 hours after reperfusion. TdT-mediated biotin-dUTP nick end labelling (TUNEL) staining technique was used to examine the apoptosis of RGCs.ResultsTwenty-four and 48 hours after reperfusion, the number of apoptotic cells in experimental group was obvious lower than that in the control group(Plt;0.05), and the number of RGCs in experimental group was higher than that in the control group(Plt;0.05).ConclusionEstrogen can protect retinal neurons from transient RIR in ovariectomized rats.(Chin J Ocul Fundus Dis, 2005,21:177-179)

    Release date:2016-09-02 05:52 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content