west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Electrical stimulation" 4 results
  • INTRAOPERATIVE EXTRASTRONG ELECTRICAL STIMULATION IN THE TREATMENT OF PERIPHERAL NERVE INJUR

    In order to enhance the therapeutic effectiveness of peripheral nerve injury, intraoperative extrab electrical stimulation was used in peripheral nerve surgery. In 16 cases of incomplete peripheral rnerve injuries or poorly regeneratedn erves, continuous intraoperative electrophysiological monitoring was used for guidance of neurolysis. Meanwhile, extrastong electrical stimulation was applied. The latency and amplitude before and after electrical stimulation were recorded and the extent of improrement was compared. In all cases, the latency and amplitude were improved after neurolysis and electrical stimulation. Clinical follow-up also showed that the function of corresponding innorvated muscle was improved. Continuous intraoperative extrab electrical stimulation could be used as an practical measure to increase the effectiveness of peripheral nerve treatment.

    Release date:2016-09-01 11:08 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON THE PROMOTIVE EFFECT OF PERCUTANEOUS ELECTRICAL STIMULATION ON PERIPHERAL NERVE REGENERATION

    To observe the effect of percutaneous electrical stimulation on peripheral nerve regeneration, a model was created on the sciatic nerves of 56 rats from either sectioned and followed by direct anastomosis or clamping of the nerve. The indices, such as conducting velocity of nerve, maximal induced action potential of muscle, growth speed of nerve, rateof axon crossing anastomosis site, number of muscular fiber on transverse area and weight of muscle by autocontrol were compared. In this study, 36 rats were divided into two groups, 24 rats in Group 1 and 12 rats in Group 2. In Gourp 1, both sciatic nerves were sectioned and was anastomozed 4 weeks later. One side of the nerve was stimulated with percutaneous electric current, the other side was served as control. In Group 2, both sides of nerves were clamped and the electical stimulationwas carried out on one side. The parameters of the electric current were 2~5HZ, 0.4m/s, 24~48V. The electrophysiological and histomorphological features were observed 1 to 6 weeks after operation. The results showed that in the stimulatedside, the indices were all superior to that of the control side. This suggestedthat electrical stimulation could promote peripheral nerve regeneration.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
  • CLINICAL ANALYSIS OF ELECTRICAL STIMULATION THRESHOLD OF NERVE FASCICLE DURING SELECTIVE POSTERIOR RHIZOTOMY

    Abstract This experiment was to study the feasibility from direct observation of muscle contraction of the lower extremity fromelectrical stimulation threshold of nerve fascicle in identifying the Iα intrafusal afferent fibers during selective posterior rhizotomy (SPR) and to investigate the clinical relationship between the muscle spasm and the electrical stimulation of nerve fascicles. The electrical stimulation threshold of all nerve fascicles in 36 cases during SPR were analysed statistically. The results showed that there was a significant difference between the electrical stimulation threshold of the severed nerve fascicles and intact nerve fascicles no matter the nerve root or each posterior nerve rootlet was examined. It was simple and reliable for surgeons to identify correctly the Iα intrafusal afferent fibers intraoperatively from direct observation of the electrical stimulation threshold of nerve fascicle.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
  • Effect of different electrical stimulation waves on orientation and alignment of adipose derived mesenchymal stem cells

    ObjectiveTo investigate the effect of different electrical stimulation waves on orientation and alignment of adipose derived mesenchymal stem cells (ADSCs).MethodsADSCs were isolated from 5-week-old Sprague Dawley rats (weight, 100-150 g) and cultivated. The cells at passages 3-5 were inoculated to prepare cell climbing slices, subsequently was exposed to direct-current electrical stimulations (ES) at electric field strengths of 1, 2, 3, 4, 5, and 6 V/cm on a homemade electric field bioreactor (groups A1, A2, A3, A4, A5, and A6); at electric field strength of 6 V/cm, at 50% duty cycle, and at frequency of 1 and 2 Hz (groups B1 and B2) of square wave ES; at electric field strength of 6 V/cm, at pulse width of 2 ms, and at frequency of 1 and 2 Hz (groups C1 and C2) of biphasic pulse wave ES; and no ES was given as a control (group D). The changes of cellular morphology affected by applied ES were evaluated by time-lapse micropho-tography via inverted microscope. The cell alignment was evaluated via average orientation factor (OF). The cytoske-leton of electric field treated ADSCs was characterized by rhodamine-phalloidin staining. The cell survival rates were assessed via cell live/dead staining and intracellular calcium activities were detected by calcium ion fluorescent staining.ResultsThe response of ADSCs to ES was related to the direct-current electric field intensity. The higher the direct-current electric field intensity was, the more cells aligned perpendicular to the direction of electric field. At each time point, there was no obvious cell alignment in groups B1, B2 and C1, C2. The average OF of groups A5 and A6 were significantly higher than that of group D (P<0.05), but no significant difference was found between other groups and group D (P>0.05). The cytoskeleton staining showed that the cells of groups A5 and A6 exhibited a compact fascicular structure of cytoskeleton, and tended to be perpendicular to the direction of the electric field vector. The cellular survival rate of groups A4, A5, and A6 were significantly lower than that of group D (P<0.05), but no significant difference was found between other groups and group D (P>0.05). Calcium fluorescence staining showed that the fluorescence intensity of calcium ions in groups A4, A5, and A6 was slightly higher than that in group D, and no significant difference was found between other groups and group D.ConclusionThe direct-current electric field stimulations with physiological electric field strength (5 V/cm and 6 V/cm) can induce the alignment of ADSCs, but no cell alignment is found under conditions of less than 5 V/cm direct-current electric field, square wave, and biphasic pulse wave stimulation. The cellular viability is negatively correlated with the electric field intensity.

    Release date:2017-07-13 11:11 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content