west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "Epidermis" 3 results
  • COMPARISON STUDIES ON EPIDERMIS CELL CULTURE EFFICIENCY BETWEEN BIG GRAFT METHODAND SMALL STRIP METHOD

    Objective To compare the efficiency of epidermis cell culture between big graft method and small strip method. Methods The big graft method was to cut the skin tissue reticularly from dermis layer while the epidermis were not cut off. After it was digested fully in trypsin, theepidermis was separated from skin and was used to culture epidermal cells. The small strip method was routine. The time to cut the skin and to separate the epidermis was recorded, and the number and quality of cells were compared between two methods. Results It took 8-10 minutes to cut an area of 5 cm2 skin into small strips and 1-2 minutes into big grafts. It took 10-15 minutes to separate the epidermis from the same area skin by small strip method and 2 minutes by big graft method. The cells showed better vigor and its number was more by big grafts than by small strips.The chance of fibroblast contamination was reduced obviously. Conclusion The big graft method is simpler than the small strip method and can culture more epidermis cells with less chance of fibroblast contamination.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • STUDY ON HUMAN AMNIOTIC MEMBRANE LOADED WITH MARROW MESENCHYMAL STEM CELLS AND EPIDERMIS CELLS IN PROMOTING HEALING OF WOUND COMBINED WITH RADIATION INJURY

    Objective To investigate the results of human amniotic membrane(HAM) which are loaded with marrow mesenchymal stem cells(MSCs) and epidermis cells in treating fullthickness skin defect combined with radiation injury. Methods Eight minipigs were used in this study. Three round fullthickness wounds(Ф3.67cm), which combined with radiation injury, were created on the dorsum of each side close to the vertebral column in each animal. Among 48 wounds, 24 left side wounds were treated with HAM loaded with MSCs and epidermis cells as experimental group (group A), 16 right side wounds with simple HAM (HAM group, group B) and 8 right side wounds with oil gauze as control (group C). The granulation tissue, reepithelization and wound area were observed after 1,2 and 3 weeks. Immunohistochemistry was performed using vWF as a marker for blood vessels.Image analysis was employed to test new area of wound at different interval time and healing rate of wound.Results The healing time of group A was 6 to 7 days faster than that of group C and 5 to 6 days faster than that of group B. After 15-17 days of graft, there were significant differences in new area of wound and healing rate between group A and groups B,C(Plt;001). New epidermis fully covered whole wound surface in group A, and their granulation tissue, which contained a lot of vWF, fibroblasts, capillaries and collagen, grew well. Many inflammatory cells still were seen in groups B and C, and their contents of vWF, fibroblasts, capillaries and collagen in granulation tissue were smaller than that in group A.Conclusion The graft of HAM loaded with MSCs and epidermis cells played an effective role in promoting healing of wound combined radiation injury with high quality.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • THE BIOLOGICAL EFFECT OF MATRIX METALLOPROTEINASE-1 IN EPIDERMAL REPAIR

    OBJECTIVE: To review the role of matrix metalloproteinase-1 (MMP-1) in the course of healing in wounded skin. METHODS: The recent literatures on MMP-1 in skin wound repair were reviewed, which gave the insight into the local effect of MMP-1 during re-epithelialization. RESULTS: Following injury, basal keratinocytes, moving from the wound edge and interact with dermal matrix proteins in the wound bed, were induced to express MMP-1 in a specific space-time pattern. MMP-1 cleaved the collagen, thereby altering its structure and affinity by which the keratinocytes binded it. MMP-1 served a beneficial role in wound healing by facilitating the proliferation and movement of keratinocytes over the collagen-rich wound bed during re-epithelialization. CONCLUSION: MMP-1 expression of migrating keratinocytes directly influences the re-epithelialization during the course of healing of the wounded skin.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content