Drug-refractory epilepsy (DRE) may be treated by surgical intervention. Intracranial EEG has been widely used to localize the epileptogenic zone (EZ). Most studies of epileptic network focus on the features of EZ nodes, such as centrality and degrees. It is difficult to apply those features to the treatment of individual patients. In this study, we proposed a spatial neighbor expansion approach for EZ localization based on a neural computational model and epileptic network reconstruction. The virtual resection method was also used to validate the effectiveness of our approach. The electrocorticography (ECoG) data from 11 patients with DRE were analyzed in this study. Both interictal data and surgical resection regions were used. The results showed that the rate of consistency between the localized regions and the surgical resections in patients with good outcomes was higher than that in patients with poor outcomes. The average deviation distance of the localized region for patients with good outcomes and poor outcomes were 15 mm and 36 mm, respectively. Outcome prediction showed that the patients with poor outcomes could be improved when the brain regions localized by the proposed approach were treated. This study provides a quantitative analysis tool for patient-specific measures for potential surgical treatment of epilepsy.
Accurate source localization of the epileptogenic zone (EZ) is the primary condition of surgical removal of EZ. The traditional localization results based on three-dimensional ball model or standard head model may cause errors. This study intended to localize the EZ by using the patient-specific head model and multi-dipole algorithms using spikes during sleep. Then the current density distribution on the cortex was computed and used to construct the phase transfer entropy functional connectivity network between different brain areas to obtain the localization of EZ. The experiment result showed that our improved methods could reach the accuracy of 89.27% and the number of implanted electrodes could be reduced by (19.34 ± 7.15)%. This work can not only improve the accuracy of EZ localization, but also reduce the additional injury and potential risk caused by preoperative examination and surgical operation, and provide a more intuitive and effective reference for neurosurgeons to make surgical plans.