ObjectiveTo comprehensively analyze the recent advancements in the field of mesenchymal stem cells (MSCs) derived exosomes (MSCs-exosomes) in tissue repair. MethodsThe literature about MSCs-exosomes in tissue repair was reviewed and analyzed. ResultsExosomes are biologically active microvesicles released from MSCs which are loaded with functional proteins, RNA, and microRNA. Exosomes can inhibit apoptosis, stimulate proliferation, alter cell phenotype in tissue repair of several diseases through cell-to-cell communication. ConclusionMSCs-exosomes is a novel source for the treatment of tissue repair. Further research of MSCs-exosomes biofunction, paracellular transport, and treatment mechanism will help the transform to clinical application.
Bone malignancies exhibit the characteristics of high incidence, poor prognosis, and strong chemoresistance. Exosomal microRNAs can regulate the proliferation of bone malignant cells, improve chemoresistance, influence cell communication and the microenvironment, and have significant potential in the diagnosis and treatment of bone malignancies. Due to their stability, exosomal microRNAs can serve as non-invasive biomarkers for diagnosis and prognosis. However, their widespread application in clinical settings requires standardized research. This review summarizes the progress of exosomal microRNA research in various bone malignancies including osteosarcoma, chondrosarcoma, Ewing sarcoma, and fibrosarcoma, to provide new theoretical foundations and perspectives for the field.
Epilepsy is a common neurological disease with complex etiology and various seizure forms. It can affect people of all ages. Although a variety of antiseizure medications are available, one-third of patients still have poor drug treatment. Therefore, better methods for the diagnosis and treatment of epilepsy are particularly important. Exosomes are extracellular vesicles with a diameter of 30 ~ 150 nm that have powerful intercellular information transmission functions and also play an important role in the central nervous system. Exosomes released by nerve cells in the local microenvironment can participate in nerve development and plasticity, regulate neuroinflammation, and reduce neuronal loss. Moreover, some proteins or micro ribonucleic acid (miRNA) in exosomes are highly correlated with epilepsy and are changed in epileptogenesis, so they play an important role in the prevention and early diagnosis of epilepsy. In addition, exosomes have better biocompatibility and lower immunogenicity. Its small size can effectively avoid the phagocytosis of mononuclear macrophages. Moreover, the proteins carried on its surface have a strong homing ability to target tissues or cells and can penetrate the blood-brain barrier to the intracranial, so exosomes have the advantage of natural drug delivery. Therefore, this study reviews the application of exosomes in epilepsy to improve the understanding of exosomes in scientific research and clinical workers.
Objective To observe the effects of co-transfection of Nogo extracellular peptide residues 1-40 (NEP1-40) and neurotrophin 3 (NT-3) genes with Schwann cell-derived exosomes (SCDEs) on the survival and differentiation of neural stem cells (NSCs), and lay the foundation for the in vivo experiments of SCDE and NSC co-transplantation. Methods The NEP1-40 and NT-3 genes were transfected into Schwann cells by lentiviral vector, and SCDEs were collected for identification. The NSCs that have been passaged for 3 times were selected and inoculated into the inoculation plate, and they were divided into conventional culture group, simple exosome culture group (adding empty vector plasmid to modify SCDE for culture) and two genes exosome culture group (adding two genes modified SCDE for culture). The activity of cells in each group was detected. The survival and differentiation of NSCs were evaluated by immunofluorescence detection of neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP) and galactosylceramidase (GALC) positive cells. Results After transfection of these two genes, the fluorescence intensity was higher and the cell state was better. The relative expression levels of messenger RNA and protein of NEP1-40 and NT-3 in the two gene groups were higher than those in the empty plasmid group (P<0.05). The relative expression levels of NEP1-40 and NT-3 proteins in SCDE of the two gene groups were higher than those of the empty vector group (P<0.05). There was no significant difference in the relative expression level of CD63 protein in SCDE between the two groups (P>0.05). In terms of cell activity, the cell activity of the two genes exosome culture group was the strongest, followed by the simple exosome culture group, and the conventional culture group was the weakest. The differences between any two groups were statistically significant (1.28±0.04 vs. 0.72±0.09 vs. 0.41±0.04, P<0.05). In terms of cell survival, NeuN-positive cells (5.23±0.22 vs. 2.36±0.09 vs. 1.00±0.01) and GALC-positive cells (2.29±0.06 vs. 1.75±0.02 vs. 1.00±0.04) of the two genes exosome culture group were the best, followed by the simple exosome culture group, and the conventional culture group were the weakest. The differences between any two groups were statistically significant (P<0.05). In terms of cell differentiation, NeuN-positive cells (0.44±0.02 vs. 0.29±0.01 vs. 0.16±0.01) and GALC-positive cells (0.38±0.07 vs. 0.23±0.02 vs. 0.12±0.01) of the two genes exosome culture group were the best, followed by the simple exosome culture group, and the conventional culture group were the weakest. The differences between any two groups were statistically significant (P<0.05). The differentiation of GFAP-positive cells in the conventional culture group was the best, followed by the simple exosome culture group, and the two genes exosome culture group was the worst (0.52±0.05 vs. 0.42±0.03 vs. 0.30±0.09). The differences between any two groups were statistically significant (P<0.05). Conclusion NEP1-40 and NT-3 genes can be successfully transfected into Schwann cells by lentiviral vector, which can effectively increase the content of related proteins in SCDE, and the exosomes can effectively promote the survival and differentiation of NSCs in vitro.
Mesenchymal stem cells (MSCs) are considered as an ideal treatment for multiple diseases including ocular disease. Recent studies have demonstrated that MSCs-derived exosomes have similar functions with MSCs. Exosomes are nanovesicles surrounded by a phospholipid layer that shuttle active cargo between different cells. They are capable of passing the biological barrier and have potentials to be utilized as natural carrier for the ocular drug delivery.
ObjectiveTo review the mechanisms of bioactive substances of mesenchymal stem cells-derived exosomes (MEX) in tissue repair and analyze the therapeutic values of MEX. MethodRecent relevant literature about MEX for tissue repair was extensively reviewed and analyzed. ResultsThe diameter of exosomes ranges from 30 to 100 nm which contain an abundance of bioactive substances, such as mRNA, microRNA, and protein. The majority of the exact bioactive substances in MEX, which are therapeutically beneficial to a wide range of diseases, are still unclear. ConclusionsBioactive substances contained in the MEX have repairing effect in tissue injury, which could provide a new insight for the clinical treatment of tissue damage. However, further studies are required to investigate the individual differences of MEX and the possible risk of accelerating cancer progression of MEX.
ObjectiveTo observe the effects of exosomes derived from rat mesenchymal stem cells (MSC-exosomes) on the rat experimental autoimmune uveitis (EAU) model.MethodsTwelve Lewis rats were randomly divided into experimental group and control group by random number table, with 6 rats in each group. Rats in the experimental group were established with EAU model, 100 μl of MSC-exosomes (50 μg) were periocular injected on the 9th day after modeling while the control rats were injected with the same volume of phosphate buffer. At different time points after modeling, the retinal structure was observed by hematoxylin and eosin (HE) staining, and the clinical and pathological manifestations were evaluated. T cells from the two groups were analyzed by flow cytometry. Immunohistochemical staining was used to observe the expression of macrophage surface marker CD68. The effect of MSC-exosomes on T cells was measured by lymphocyte proliferation assays. And flow cytometry was used to detect Th1, Th17 and regulatory T cells Variety. Electroretinogram (ERG) was used to evaluate the retinal function. Data were compared between the two groups using the t test.ResultsHE staining showed that the retina structure of the experimental group was more complete than that of the control group on the 15th day after modeling. Immunohistochemical staining showed that the positive expression of CD68 in the experimental group was significantly less than that in the control group. On the 15th day after modeling, the retinal pathological score of the experimental group was lower than that of the control group. On the 9th to 13th day after modeling, compared to the control group, the average clinical scores of the retina in the experimental group were lower, and the difference was statistically significant (t=3.665, 3.21, 3.181, 4.121, 3.227; P<0.01). The results of T cell proliferation assay showed that exosomes (1.0, 10.0 μg/ml) inhibited the proliferation of T cells under different concentrations of R16 (1, 10, 30 μg/ml), and the difference was statistically significant (F=11.630, 4.188, 6.011; P<0.05). The results of flow cytometry showed that the number of Th1, Th17 and Treg cell subsets in the experimental group was decreased compared with the control group, and the difference was statistically significant (t=7.374, 4.525, 6.910; P<0.01). There was no difference in the proportion of cells in the T cells and lymph nodes (t=1.126, 0.493, 0.178; P=0.286, 0.632, 0.862). The results of ERG showed that, compared with the control group, the amplitudes of 0.01, 3.0 cd/m2 a wave and b wave of the experiment group were all increased on the 15th day after modeling, and the differences were statistically significant (t=3.604, 4.178, 4.551, 2.566, P<0.05).ConclusionsMSC-exosomes can reduce the clinical and pathological manifestations of EAU, protect retinal function, reduce ocular macrophage infiltration, down-regulate the proportion of inflammatory cells in the eye, and inhibit T cell proliferation.
The study aims to explore the effect of mesenchymal stem cells-derived exosomes (MSCs-Exo) on staurosporine (STS)-induced chondrocyte apoptosis before and after exposure to pulsed electromagnetic field (PEMF) at different frequencies. The AMSCs were extracted from the epididymal fat of healthy rats before and after exposure to the PEMF at 1 mT amplitude and a frequency of 15, 45, and 75 Hz, respectively, in an incubator. MSCs-Exo was extracted and identified. Exosomes were labeled with DiO fluorescent dye, and then co-cultured with STS-induced chondrocytes for 24 h. Cellular uptake of MSC-Exo, apoptosis, and the protein and mRNA expression of aggrecan, caspase-3 and collagenⅡA in chondrocytes were observed. The study demonstrated that the exposure of 75 Hz PEMF was superior to 15 and 45 Hz PEMF in enhancing the effect of exosomes in alleviating chondrocyte apoptosis and promoting cell matrix synthesis. This study lays a foundation for the regulatory mechanism of PEMF stimulation on MSCs-Exo in inhibiting chondrocyte apoptosis, and opens up a new direction for the prevention and treatment of osteoarthritis.
Exosomes derived from mesenchymal stem cells are a class of discoid extracellular vesicles with a diameter of 40—100 nm discovered in recent years. They contain abundant nucleic acids, proteins and lipids, and have abundant biological information. Exosomes derived from mesenchymal stem cells regulate cell activities by acting on receptor cells, and promote regeneration of many tissues, such as bone, cartilage, skin, intervertebral disc, and spinal nerves. Studies have shown that exosomes derived from mesenchymal stem cells have similar biological functions as mesenchymal stem cells, and are more stable and easier to be preserved. Therefore, they have been increasingly applied in the field of orthopedic tissue repair in recent years. This paper reviews the application of exosomes derived from mesenchymal stem cells in orthopedics.
Objective To investigate the effects of exosomes from cultured human retinal pigment epithelium (ARPE-19) cells affected by oxidative stress on the proliferation and expression of vascular endothelial growth factor-A (VEGF-A) and Akt of ARPE-19 cells. Methods Culture ARPE-19 cells. The concentration of 2.5 μmol/L rotenone was selected to simulate oxidative stress and isolated ARPE-19-exosome. Exosomes were isolated by ExoQuick exosome precipitation solution. Transmission electron microscopy was used to identify the morphology of exosomes. Western blot was used to detect exosomes’ surface-specific maker protein CD63. ARPE-19 cells affected by oxidative stress were cultured with exosome as experimental group, normal ARPE-19 cells were cultured with exosome as control group. The cell proliferation was examined by methyl thiazolyl tetrazolium assay. Western blot and immunofluorescence assay were used to detect the expression levels of VEGF-A and Akt protein. Real-time quantitative polymerase chain reaction (RT-PCR) was used to detect the levels of VEGF-A mRNA and Akt mRNA. Results The diameter of normal ARPE-19-exosomes ranged from 50 to 150 nm. The isolated exosomes expressed CD63. AREP-19 cells were cultured with ARPE-19 (affected by rotenone)-exosome, the cell viability in experimental group was significantly reduced than in the control group. Green fluorescence was observed in the cytoplasm under fluorescence microscope. Compared with the control group, VEGF-A was up-regulated expressed and Akt was down-regulated expressed. Western blot results showed that, VEGF-A protein expression in the experimental group were higher than the control group. Akt protein expression in the experimental group were less than the control group. The difference was statically significant (t=3.822, 6.527;P<0.05). RT-PCR results showed that VEGF-A mRNA expression levels was higher in the experimental group than the control group. Akt mRNA expression levels was lower in the experimental group than the control group. The difference was statically significant (t=8.805, −7.823;P<0.05). Conclusions Exosomes from ARPE-19 cells affected by oxidative stress inhibit the proliferation of normal ARPE-19 cells, increase the expression of VEGF-A and reduce the expression of Akt.