west china medical publishers
Author
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Author "FAN Qingyu." 2 results
  • EFFECT OF OLFACTORY ENSHEATHING CELLS ON GROWTH OF SPINAL CORD NEURONS AND ITSPROTECTIVE EFFECT ON NEURONS AFTER INJURY IN VITRO

    Objective To investigate the effect of olfactory ensheathing cell culture medium (OECCM) on the growth of spinal cord neurons and its protective effect on the injured neurons by H2O2, and to disscuss the probable protective mechanisms of olfactory ensheathing cells (OECs). Methods The primary olfactory ensheathing cells (OECs) were isolated from olfactory bulb of adult SD rat, and OECCM were prepared. The morphology of OECs was observed by inverted phase contrast microscope, identified by rabbit-antiratlow-affinity nerve growth factor p75 (NGFRp75), and its purity were calculated.Primary spinal cord neurons were cultured from 15 to 17 days pregnant SD rats, and injury model of neurons were prepared by H2O2. OECCM and control culture medium were added into the normal spinal neurons (groups A, B). OECCM and control culture medium were added into the injured spinal neurons by H2O2 (groups C, D). In groups A and C, 200 μL of control culture medium was used; in groups B and D, 100 μL of control culture medium and 100 μL of OECCM were used. Then the growth index such as average diameter of neuron body, the number and length of neuron axons were measured. The viabil ities of normal and injured neurons were assessed by MTT. Results OECs showed bipolar or tripolar after 6-9 days of culture. Primary spinal cord neurons were round and bigger, and neuron axons grew significantly and showed bipolar after 5-7 days of culture. The immunocytochemisty of OECs by NGFRp75 showed that membrane were stained. The degree of purity was more than 90%. Primary spinal cord neurons grew well after 6-9 days of culture, and compared with group A, neurons of group B grew b, whose cell density and diameter were bigger. The average diameter of neuron body, the number and length of neuron axons were (33.38 ± 6.80) D/μm, (1.67 ± 0.80), and (91.19 ± 62.64) L/μm in group A, and (37.39 ± 7.28) D/μm, (1.76 ± 0.82), and (121.33 ± 81.13) L/μm in group B; showing statistically significant differences (P lt; 0.05). The absorbency (A) value of neurons was 0.402 0 ± 0.586 9 in group A and 0.466 0 ± 0.479 0 in group B; showing statistically significant difference (P lt; 0.01). After 2 hours of injury by H2O2, the cell density of spinal cord neurons decreased, and neuron axons shortened. The A value of injured neurons was 0.149 0 ± 0.030 0 in group C and 0.184 0 ± 0.052 0 in group D, showing statistically significant difference (P lt; 0.01). Conclusion The results above suggest that OECCM could improve the growth of spinal cord neurons and protectthe injured neurons. The neurotrophic factors that OECs secrete play an important role in the treatment of spinal cord injury.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • DIFFERENTIATION OF BONE MARROW MESENCHYMAL STEM CELLS INTO NUCLEUS PULPOSUS-LIKE CELLS TRANSFECTED BY SOX9 EUKARYOTIC EXPRESSION VECTOR IN VITRO

    Objective The biological treatment of intervertebral disc degeneration becomes a research hotspot in recentyears. It is necessary to find an effective approach to induce bone marrow mesenchymal stem cells (BMSCs) differentiate to disc cells which could make appl ication of cell transplantation as a treatment of intervertebral disc degeneration. To investigate the effects of the recombinant plasmid pcDNA3.1IE-SOX9Flag on differentiation of rabbit BMSCs into nucleus pulposus-l ike cells. Methods The eukaryotic expression vector of pcDNA3.1IE-SOX9Flag was constructed. Rabbit BMSCs were isolated and cultured from one-month-old New Zealand white rabbits and were induced into osteogenetic cells in the osteogenesis supplement medium; and the cell surface markers were detected by flow cytometry. The cells at the 3rd passage were randomly divided into 3 groups: in transfected group, the cells were transfected with recombinant plasmid pcDNA3.1IE-SOX9Flag; in negative control group, the cells were transfected with plasmid pcDNA3.1; and in blank control group, the cells were treated with the media without recombinant plasmid. After selected by G418 for 7 days, the cells were harvested and RT-PCR was employed to assay SOX9 mRNA and collagen type II gene (Col2al) mRNA expressions in BMSCs. The expression of SOX9 protein was assayed by Western blot and collagen type II expression was also observed by immunohistochemical staining. Results The SOX9 eukaryotic expression vector was constructed successfully. The BMSCs after 5 days of osteogenetic induction were positive for the alkal ine phosphatase staining. What was more, CD44 expression was positive but CD34 and CD45 expressions were negative. The transfection efficiency was 34.32% ± 1.75% at 72 hours after transfection. After 2 weeks of transfection, BMSCs turned to polygonal and ell iptical. And the cell prol iferation was gradually slow which was similar to the growth characteristic of nucleus pulposus cells. RT-PCR identification showed that SOX9 mRNA and Col2al mRNA expressions were positive in transfected group, and were negative in 2 control groups. Western blot detection showed that SOX9 protein expressed in transfected group but did not express in the control groups. At 2 weeks after transfection, the result of the immunohistochemicalstaining for collagen type II was positive in transfected group. Conclusion The recombinant plasmid pcDNA3.1IE-SOX9Flag can be successfully transfected into rabbit BMSCs, the transfected BMSCs can differentiate into nucleus pulposus-l ike cells, which lays a theoretical foundation for treatment of intervertebral disc degeneration with BMSCs transplantation.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content