The medical magnetic resonance (MR) image reconstruction is one of the key technologies in the field of magnetic resonance imaging (MRI). The compressed sensing (CS) theory indicates that the image can be reconstructed accurately from highly undersampled measurements by using the sparsity of the MR image. However, how to improve the image reconstruction quality by employing more sparse priors of the image becomes a crucial issue for MRI. In this paper, an adaptive image reconstruction model fusing the double dictionary learning is proposed by exploiting sparse priors of the MR image in the image domain and transform domain. The double sparse model which combines synthesis sparse model with sparse transform model is applied to the CS MR image reconstruction according to the complementarity of synthesis sparse and sparse transform model. Making full use of the two sparse priors of the image under the synthesis dictionary and transform dictionary learning, the proposed model is tackled in stages by the iterative alternating minimization algorithm. The solution procedure needs to utilize the synthesis and transform K-singular value decomposition (K-SVD) algorithms. Compared with the existing MRI models, the experimental results show that the proposed model can more efficiently improve the quality of the image reconstruction, and has faster convergence speed and better robustness to noise.
ObjectiveTo explore the effect of Kaempferol on bone microvascular endothelial cells (BMECs) in glucocorticoid induced osteonecrosis of the femoral head (GIONFH) in vitro. MethodsBMECs were isolated from cancellous bone of femoral head or femoral neck donated voluntarily by patients with femoral neck fracture. BMECs were identified by von Willebrand factor and CD31 immunofluorescence staining and tube formation assay. The cell counting kit 8 (CCK-8) assay was used to screen the optimal concentration and the time point of dexamethasone (Dex) to inhibit the cell activity and the optimal concentration of Kaempferol to improve the inhibition of Dex. Then the BMECs were divided into 4 groups, namely, the cell group (group A), the cells treated with optimal concentration of Dex group (group B), the cells treated with optimal concentration of Dex+1 μmol/L Kaempferol group (group C), and the cells treated with optimal concentration of Dex+5 μmol/L Kaempferol group (group D). EdU assay, in vitro tube formation assay, TUNEL staining assay, Annexin Ⅴ/propidium iodide (PI) staining assay, Transwell migration assay, scratch healing assay, and Western blot assay were used to detect the effect of Kaempferol on the proliferation, tube formation, apoptosis, migration, and protein expression of BMECs treated with Dex. ResultsThe cultured cells were identified as BMECs. CCK-8 assay showed that the optimal concentration and the time point of Dex to inhibit cell activity was 300 μmol/L for 24 hours, and the optimal concentration of Kaempferol to improve the inhibitory activity of Dex was 1 μmol/L. EdU and tube formation assays showed that the cell proliferation rate, tube length, and number of branch points were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). TUNEL and Annexin V/PI staining assays showed that the rates of TUNEL positive cells and apoptotic cells were significantly higher in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Scratch healing assay and Transwell migration assay showed that the scratch healing rate and the number of migration cells were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Western blot assay demonstrated that the relative expressions of Cleaved Caspase-3 and Bax proteins were significantly higher in groups B-D than in group A, and in groups B and D than in group C (P<0.05); the relative expressions of matrix metalloproteinase 2, Cyclin D1, Cyclin E1, VEGFA, and Bcl2 proteins were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Conclusion Kaempferol can alleviate the damage and dysfunction of BMECs in GIONFH.